Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Neuroimage. 2012 Feb 15;59(4):4055-63. doi: 10.1016/j.neuroimage.2011.08.053. Epub 2011 Aug 26.
Most diffusion imaging studies have used subject registration to an atlas space for enhanced quantification of anatomy. However, standard diffusion tensor atlases lack information in regions of fiber crossing and are based on adult anatomy. The degree of error associated with applying these atlases to studies of children for example has not yet been estimated but may lead to suboptimal results. This paper describes a novel technique for generating population-specific high angular resolution diffusion imaging (HARDI)-based atlases consisting of labeled regions of homogenous white matter. Our approach uses a fiber orientation distribution (FOD) diffusion model and a data driven clustering algorithm. White matter regional labeling is achieved by our automated data driven clustering algorithm that has the potential to delineate white matter regions based on fiber complexity and orientation. The advantage of such an atlas is that it is study specific and more comprehensive in describing regions of white matter homogeneity as compared to standard anatomical atlases. We have applied this state of the art technique to a dataset consisting of adolescent and preadolescent children, creating one of the first examples of a HARDI-based atlas, thereby establishing the feasibility of the atlas creation framework. The white matter regions generated by our automated clustering algorithm have lower FOD variance than when compared to the regions created from a standard anatomical atlas.
大多数扩散成像研究都使用了主体注册到图谱空间,以增强解剖结构的定量分析。然而,标准的扩散张量图谱缺乏纤维交叉区域的信息,并且基于成人解剖结构。将这些图谱应用于儿童研究的误差程度尚未得到估计,但可能导致结果不理想。本文描述了一种生成基于群体的高角分辨率扩散成像(HARDI)图谱的新技术,这些图谱由同质白质的标记区域组成。我们的方法使用纤维方向分布(FOD)扩散模型和数据驱动的聚类算法。通过我们的自动数据驱动聚类算法实现了白质区域的标记,该算法有可能根据纤维的复杂性和方向来描绘白质区域。与标准解剖图谱相比,这种图谱的优势在于它是特定于研究的,并且更全面地描述了白质同质性区域。我们已经将这项最先进的技术应用于由青少年和青春期前儿童组成的数据集,创建了第一个基于 HARDI 的图谱之一,从而确立了图谱创建框架的可行性。与从标准解剖图谱创建的区域相比,我们的自动聚类算法生成的白质区域的 FOD 方差更低。