Suppr超能文献

基于弥散张量成像的自动分割生成白质图谱。

White matter atlas generation using HARDI based automated parcellation.

机构信息

Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Neuroimage. 2012 Feb 15;59(4):4055-63. doi: 10.1016/j.neuroimage.2011.08.053. Epub 2011 Aug 26.

Abstract

Most diffusion imaging studies have used subject registration to an atlas space for enhanced quantification of anatomy. However, standard diffusion tensor atlases lack information in regions of fiber crossing and are based on adult anatomy. The degree of error associated with applying these atlases to studies of children for example has not yet been estimated but may lead to suboptimal results. This paper describes a novel technique for generating population-specific high angular resolution diffusion imaging (HARDI)-based atlases consisting of labeled regions of homogenous white matter. Our approach uses a fiber orientation distribution (FOD) diffusion model and a data driven clustering algorithm. White matter regional labeling is achieved by our automated data driven clustering algorithm that has the potential to delineate white matter regions based on fiber complexity and orientation. The advantage of such an atlas is that it is study specific and more comprehensive in describing regions of white matter homogeneity as compared to standard anatomical atlases. We have applied this state of the art technique to a dataset consisting of adolescent and preadolescent children, creating one of the first examples of a HARDI-based atlas, thereby establishing the feasibility of the atlas creation framework. The white matter regions generated by our automated clustering algorithm have lower FOD variance than when compared to the regions created from a standard anatomical atlas.

摘要

大多数扩散成像研究都使用了主体注册到图谱空间,以增强解剖结构的定量分析。然而,标准的扩散张量图谱缺乏纤维交叉区域的信息,并且基于成人解剖结构。将这些图谱应用于儿童研究的误差程度尚未得到估计,但可能导致结果不理想。本文描述了一种生成基于群体的高角分辨率扩散成像(HARDI)图谱的新技术,这些图谱由同质白质的标记区域组成。我们的方法使用纤维方向分布(FOD)扩散模型和数据驱动的聚类算法。通过我们的自动数据驱动聚类算法实现了白质区域的标记,该算法有可能根据纤维的复杂性和方向来描绘白质区域。与标准解剖图谱相比,这种图谱的优势在于它是特定于研究的,并且更全面地描述了白质同质性区域。我们已经将这项最先进的技术应用于由青少年和青春期前儿童组成的数据集,创建了第一个基于 HARDI 的图谱之一,从而确立了图谱创建框架的可行性。与从标准解剖图谱创建的区域相比,我们的自动聚类算法生成的白质区域的 FOD 方差更低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85e8/3272315/00959ee96da1/nihms327861f1.jpg

相似文献

1
White matter atlas generation using HARDI based automated parcellation.基于弥散张量成像的自动分割生成白质图谱。
Neuroimage. 2012 Feb 15;59(4):4055-63. doi: 10.1016/j.neuroimage.2011.08.053. Epub 2011 Aug 26.
7
Automated tract extraction via atlas based Adaptive Clustering.通过基于图谱的自适应聚类进行自动纤维束提取。
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):596-607. doi: 10.1016/j.neuroimage.2014.08.021. Epub 2014 Aug 15.
9
Development of a high angular resolution diffusion imaging human brain template.高角分辨率扩散成像人脑模板的开发。
Neuroimage. 2014 May 1;91:177-86. doi: 10.1016/j.neuroimage.2014.01.009. Epub 2014 Jan 15.

引用本文的文献

2
Highly Reproducible Whole Brain Parcellation in Individuals via Voxel Annotation with Fiber Clusters.通过纤维簇体素标注实现个体全脑高度可重复的脑区划分
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:477-486. doi: 10.1007/978-3-030-87234-2_45. Epub 2021 Sep 21.

本文引用的文献

4
Symmetric diffeomorphic registration of fibre orientation distributions.对称的纤维方向分布的可变形配准。
Neuroimage. 2011 Jun 1;56(3):1171-80. doi: 10.1016/j.neuroimage.2011.02.014. Epub 2011 Feb 18.
5
SPHERE: SPherical Harmonic Elastic REgistration of HARDI data.SPHERE:基于 SPherical Harmonic 的弥散张量 HARDI 数据配准。
Neuroimage. 2011 Mar 15;55(2):545-56. doi: 10.1016/j.neuroimage.2010.12.015. Epub 2010 Dec 13.
6
The effect of template selection on diffusion tensor voxel-based analysis results.模板选择对弥散张量体素分析结果的影响。
Neuroimage. 2011 Mar 15;55(2):566-73. doi: 10.1016/j.neuroimage.2010.12.005. Epub 2010 Dec 10.
7
8
GRAM: A framework for geodesic registration on anatomical manifolds.GRAM:一种解剖流形上测地线配准的框架。
Med Image Anal. 2010 Oct;14(5):633-42. doi: 10.1016/j.media.2010.06.001. Epub 2010 Jun 8.
10
Neuroimaging of autism.自闭症的神经影像学研究。
Neuroradiology. 2010 Jan;52(1):3-14. doi: 10.1007/s00234-009-0583-y. Epub 2009 Dec 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验