Suppr超能文献

拟南芥单体天线蛋白缺失突变体的猝灭。

Quenching in Arabidopsis thaliana mutants lacking monomeric antenna proteins of photosystem II.

机构信息

Max-Planck-Institut für Bioanorganische Chemie, Stiftstraße 34-36, D-45470 Mülheim a.d.Ruhr, Germany.

出版信息

J Biol Chem. 2011 Oct 21;286(42):36830-40. doi: 10.1074/jbc.M111.273227. Epub 2011 Aug 15.

Abstract

The minor light-harvesting complexes CP24, CP26, and CP29 have been proposed to play a key role in the zeaxanthin (Zx)-dependent high light-induced regulation (NPQ) of excitation energy in higher plants. To characterize the detailed roles of these minor complexes in NPQ and to determine their specific quenching effects we have studied the ultrafast fluorescence kinetics in knockout (ko) mutants koCP26, koCP29, and the double mutant koCP24/CP26. The data provide detailed insight into the quenching processes and the reorganization of the Photosystem (PS) II supercomplex under quenching conditions. All genotypes showed two NPQ quenching sites. Quenching site Q1 is formed by a light-induced functional detachment of parts of the PSII supercomplex and a pronounced quenching of the detached antenna parts. The antenna remaining bound to the PSII core was also quenched substantially in all genotypes under NPQ conditions (quenching site Q2) as compared with the dark-adapted state. The latter quenching was about equally strong in koCP26 and the koCP24/CP26 mutants as in the WT. Q2 quenching was substantially reduced, however, in koCP29 mutants suggesting a key role for CP29 in the total NPQ. The observed quenching effects in the knockout mutants are complicated by the fact that other minor antenna complexes do compensate in part for the lack of the CP24 and/or CP29 complexes. Their lack also causes some LHCII dissociation already in the dark.

摘要

辅捕光复合物 CP24、CP26 和 CP29 被认为在叶黄素 (Zx) 依赖性高光诱导的激发能调节 (NPQ) 中发挥关键作用。为了描述这些次要复合物在 NPQ 中的详细作用,并确定它们的特定猝灭效应,我们研究了敲除 (ko) 突变体 koCP26、koCP29 和双突变体 koCP24/CP26 的超快荧光动力学。数据提供了在猝灭条件下 PSII 超复合物的猝灭过程和重组的详细信息。所有基因型都显示了两个 NPQ 猝灭位点。猝灭位点 Q1 是由 PSII 超复合物的部分光诱导功能分离和分离的天线部分的明显猝灭形成的。与暗适应状态相比,所有基因型在 NPQ 条件下,与 PSII 核心结合的天线部分也被显著猝灭(猝灭位点 Q2)。与 WT 相比,koCP26 和 koCP24/CP26 突变体中的后者猝灭强度大致相同。然而,在 koCP29 突变体中,Q2 猝灭显著减少,表明 CP29 在总 NPQ 中起着关键作用。观察到的敲除突变体中的猝灭效应很复杂,因为其他次要天线复合物部分补偿了 CP24 和/或 CP29 复合物的缺乏。它们的缺乏也导致在黑暗中已经发生一些 LHCII 解离。

相似文献

1
Quenching in Arabidopsis thaliana mutants lacking monomeric antenna proteins of photosystem II.
J Biol Chem. 2011 Oct 21;286(42):36830-40. doi: 10.1074/jbc.M111.273227. Epub 2011 Aug 15.
2
Disturbed excitation energy transfer in Arabidopsis thaliana mutants lacking minor antenna complexes of photosystem II.
Biochim Biophys Acta. 2014 Dec;1837(12):1981-1988. doi: 10.1016/j.bbabio.2014.09.011.
3
Functional organization of photosystem II antenna complexes: CP29 under the spotlight.
Biochim Biophys Acta Bioenerg. 2017 Oct;1858(10):815-822. doi: 10.1016/j.bbabio.2017.07.003. Epub 2017 Aug 2.
5
The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes.
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):666-675. doi: 10.1016/j.bbabio.2018.03.005. Epub 2018 Mar 13.
6
Arabidopsis thaliana egy2 mutants display altered expression level of genes encoding crucial photosystem II proteins.
J Plant Physiol. 2018 Dec;231:155-167. doi: 10.1016/j.jplph.2018.09.010. Epub 2018 Sep 21.
8
Loss of a single chlorophyll in CP29 triggers re-organization of the Photosystem II supramolecular assembly.
Biochim Biophys Acta Bioenerg. 2022 Jun 1;1863(5):148555. doi: 10.1016/j.bbabio.2022.148555. Epub 2022 Apr 2.
9
Photosystem II monomeric antenna CP26 plays a key role in nonphotochemical quenching in Chlamydomonas.
Plant Physiol. 2023 Sep 22;193(2):1365-1380. doi: 10.1093/plphys/kiad391.

引用本文的文献

5
Bidirectional Energy Flow in the Photosystem II Supercomplex.
J Phys Chem B. 2024 Aug 22;128(33):7941-7953. doi: 10.1021/acs.jpcb.4c02508. Epub 2024 Aug 14.
6
The nature of carotenoid S* state and its role in the nonphotochemical quenching of plants.
Nat Commun. 2024 Jan 29;15(1):847. doi: 10.1038/s41467-024-45090-9.
7
Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields.
J Integr Plant Biol. 2022 Feb;64(2):564-591. doi: 10.1111/jipb.13206.
8
A different perspective for nonphotochemical quenching in plant antenna complexes.
Nat Commun. 2021 Dec 9;12(1):7152. doi: 10.1038/s41467-021-27526-8.
9
Photosystem II photoinhibition and photoprotection in a lycophyte, Selaginella martensii.
Physiol Plant. 2022 Jan;174(1):e13604. doi: 10.1111/ppl.13604. Epub 2021 Dec 6.
10
Perspectives on improving light distribution and light use efficiency in crop canopies.
Plant Physiol. 2021 Feb 25;185(1):34-48. doi: 10.1093/plphys/kiaa006.

本文引用的文献

1
The use of chlorophyll fluorescence nomenclature in plant stress physiology.
Photosynth Res. 1990 Sep;25(3):147-50. doi: 10.1007/BF00033156.
5
Regulation of plant light harvesting by thermal dissipation of excess energy.
Biochem Soc Trans. 2010 Apr;38(2):651-60. doi: 10.1042/BST0380651.
6
Effect of antenna-depletion in Photosystem II on excitation energy transfer in Arabidopsis thaliana.
Biophys J. 2010 Mar 3;98(5):922-31. doi: 10.1016/j.bpj.2009.11.012.
8
Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves.
Plant Physiol. 2010 Mar;152(3):1611-24. doi: 10.1104/pp.109.148213. Epub 2009 Dec 23.
9
Functional architecture of higher plant photosystem II supercomplexes.
EMBO J. 2009 Oct 7;28(19):3052-63. doi: 10.1038/emboj.2009.232. Epub 2009 Aug 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验