Sanford-Burnham Medical Research Institute, La Jolla, California 92037; Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia.
Sanford-Burnham Medical Research Institute, La Jolla, California 92037.
J Biol Chem. 2011 Oct 14;286(41):35782-35794. doi: 10.1074/jbc.M111.267963. Epub 2011 Aug 17.
Bacteria exploit multiple mechanisms for controlling central carbon metabolism (CCM). Thus, a bioinformatic analysis together with some experimental data implicated the HexR transcriptional factor as a global CCM regulator in some lineages of Gammaproteobacteria operating as a functional replacement of the Cra regulator characteristic of Enterobacteriales. In this study, we combined a large scale comparative genomic reconstruction of HexR-controlled regulons in 87 species of Proteobacteria with the detailed experimental analysis of the HexR regulatory network in the Shewanella oneidensis model system. Although nearly all of the HexR-controlled genes are associated with CCM, remarkable variations were revealed in the scale (from 1 to 2 target operons in Enterobacteriales up to 20 operons in Aeromonadales) and gene content of HexR regulons between 11 compared lineages. A predicted 17-bp pseudo-palindrome with a consensus tTGTAATwwwATTACa was confirmed as a HexR-binding motif for 15 target operons (comprising 30 genes) by in vitro binding assays. The negative effect of the key CCM intermediate, 2-keto-3-deoxy-6-phosphogluconate, on the DNA-regulator complex formation was verified. A dual mode of HexR action on various target promoters, repression of genes involved in catabolic pathways and activation of gluconeogenic genes, was for the first time predicted by the bioinformatic analysis and experimentally verified by changed gene expression pattern in S. oneidensis ΔhexR mutant. Phenotypic profiling revealed the inability of this mutant to grow on lactate or pyruvate as a single carbon source. A comparative metabolic flux analysis of wild-type and mutant strains of S. oneidensis using [(13)C]lactate labeling and GC-MS analysis confirmed the hypothesized HexR role as a master regulator of gluconeogenic flux from pyruvate via the transcriptional activation of phosphoenolpyruvate synthase (PpsA).
细菌利用多种机制来控制中心碳代谢(CCM)。因此,生物信息学分析和一些实验数据表明,HexR 转录因子是一些γ变形菌门的全局 CCM 调节剂,它作为 Enterobacteriales 特征性的 Cra 调节剂的功能替代物发挥作用。在这项研究中,我们将 87 种 Proteobacteria 中 HexR 控制的调控子的大规模比较基因组重建与 Shewanella oneidensis 模型系统中 HexR 调控网络的详细实验分析相结合。尽管几乎所有的 HexR 控制的基因都与 CCM 相关,但在 11 个比较的谱系之间,HexR 调控子的规模(从 Enterobacteriales 的 1 到 2 个靶操纵子到 Aeromonadales 的 20 个操纵子)和基因含量都显示出显著的变化。通过体外结合实验证实,预测的 17 个碱基对的伪回文序列 tTGTAATwwwATTACa 是 15 个靶操纵子(包含 30 个基因)的 HexR 结合基序。关键的 CCM 中间产物 2-酮-3-脱氧-6-磷酸葡萄糖酸对 DNA-调节剂复合物形成的负影响得到了验证。通过生物信息学分析首次预测了 HexR 对各种靶启动子的双重作用模式,即抑制分解代谢途径中的基因和激活糖异生基因,并用 S. oneidensis ΔhexR 突变体的基因表达模式变化进行了实验验证。表型分析显示,该突变体不能以乳酸或丙酮酸作为单一碳源生长。使用 [(13)C] 乳酸标记和 GC-MS 分析对 S. oneidensis 野生型和突变株的比较代谢通量分析证实了假设的 HexR 作为通过转录激活磷酸烯醇丙酮酸合酶(PpsA)从丙酮酸到糖异生通量的主调节剂的作用。