Suppr超能文献

高频单片 CMUT-on-CMOS 成像阵列的前端接收电子学。

Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.

机构信息

Georgia Institute of Technology, School of Electrical and Computing Engineering, Atlanta, GA, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Aug;58(8):1658-68. doi: 10.1109/TUFFC.2011.1993.

Abstract

This paper describes the design of CMOS receiver electronics for monolithic integration with capacitive micromachined ultrasonic transducer (CMUT) arrays for highfrequency intravascular ultrasound imaging. A custom 8-inch (20-cm) wafer is fabricated in a 0.35-μm two-poly, four-metal CMOS process and then CMUT arrays are built on top of the application specific integrated circuits (ASICs) on the wafer. We discuss advantages of the single-chip CMUT-on-CMOS approach in terms of receive sensitivity and SNR. Low-noise and high-gain design of a transimpedance amplifier (TIA) optimized for a forward-looking volumetric-imaging CMUT array element is discussed as a challenging design example. Amplifier gain, bandwidth, dynamic range, and power consumption trade-offs are discussed in detail. With minimized parasitics provided by the CMUT-on-CMOS approach, the optimized TIA design achieves a 90 fA/√Hz input-referred current noise, which is less than the thermal-mechanical noise of the CMUT element. We show successful system operation with a pulseecho measurement. Transducer-noise-dominated detection in immersion is also demonstrated through output noise spectrum measurement of the integrated system at different CMUT bias voltages. A noise figure of 1.8 dB is obtained in the designed CMUT bandwidth of 10 to 20 MHz.

摘要

本文描述了用于与电容式微机械超声换能器 (CMUT) 阵列单片集成的 CMOS 接收器电子设备的设计,用于高频血管内超声成像。在 0.35-μm 两层四金属 CMOS 工艺中制造了一个定制的 8 英寸(20 厘米)晶圆,然后在晶圆上的专用集成电路 (ASIC) 上构建 CMUT 阵列。我们讨论了单芯片 CMUT-on-CMOS 方法在接收灵敏度和 SNR 方面的优势。作为具有挑战性的设计示例,讨论了针对前向容积成像 CMUT 阵列元件的跨阻放大器 (TIA) 的低噪声和高增益设计。详细讨论了放大器增益、带宽、动态范围和功耗之间的权衡。通过 CMUT-on-CMOS 方法提供的最小寄生效应,优化的 TIA 设计实现了 90 fA/√Hz 的输入参考电流噪声,小于 CMUT 元件的热机械噪声。我们通过脉冲回波测量展示了成功的系统运行。通过在不同的 CMUT 偏置电压下测量集成系统的输出噪声谱,还证明了在浸没状态下以换能器噪声为主的检测。在设计的 CMUT 带宽为 10 至 20 MHz 时,获得了 1.8 dB 的噪声系数。

相似文献

1
Front-end receiver electronics for high-frequency monolithic CMUT-on-CMOS imaging arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Aug;58(8):1658-68. doi: 10.1109/TUFFC.2011.1993.
3
Single-chip CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Feb;61(2):239-50. doi: 10.1109/TUFFC.2014.6722610.
4
Monolithic CMUT-on-CMOS integration for intravascular ultrasound applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12):2659-67. doi: 10.1109/TUFFC.2011.2128.
5
Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):327-42. doi: 10.1109/TUFFC.2008.652.
6
Thermal-mechanical-noise-based CMUT characterization and sensing.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Jun;59(6):1267-75. doi: 10.1109/TUFFC.2012.2317.
7
A low-complexity and high-frequency ASIC transceiver for an ultrasound imaging system.
Biomed Eng Lett. 2024 Jul 25;14(6):1377-1384. doi: 10.1007/s13534-024-00411-1. eCollection 2024 Nov.
8
A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:101-4. doi: 10.1109/EMBC.2013.6609447.
9
Analysis and Design of High-Frequency 1-D CMUT Imaging Arrays in Noncollapsed Mode.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):382-393. doi: 10.1109/TUFFC.2018.2887043. Epub 2018 Dec 17.
10
Forward-viewing CMUT arrays for medical imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jul;51(7):887-95. doi: 10.1109/tuffc.2004.1320749.

引用本文的文献

1
A low-complexity and high-frequency ASIC transceiver for an ultrasound imaging system.
Biomed Eng Lett. 2024 Jul 25;14(6):1377-1384. doi: 10.1007/s13534-024-00411-1. eCollection 2024 Nov.
2
A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Sep;71(9):1087-1096. doi: 10.1109/TUFFC.2024.3436918. Epub 2024 Sep 4.
3
CMUT as a Transmitter for Microbubble-Assisted Blood-Brain Barrier Opening.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Aug;71(8):1042-1050. doi: 10.1109/TUFFC.2024.3417818. Epub 2024 Aug 19.
4
Design of Preamplifier for Ultrasound Transducers.
Sensors (Basel). 2024 Jan 25;24(3):786. doi: 10.3390/s24030786.
6
Dual-Resonance (16/32 MHz) Piezoelectric Transducer With a Single Electrical Connection for Forward-Viewing Robotic Guidewire.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1428-1441. doi: 10.1109/TUFFC.2022.3150746. Epub 2022 Mar 30.
7
Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound.
Adv Drug Deliv Rev. 2022 Jan;180:114043. doi: 10.1016/j.addr.2021.114043. Epub 2021 Nov 18.
8
Supply-Inverted Bipolar Pulser and Tx/Rx Switch for CMUTs Above the Process Limit for High Pressure Pulse Generation.
IEEE Sens J. 2019 Dec 15;19(24):12050-12058. doi: 10.1109/jsen.2019.2938079. Epub 2019 Aug 28.
9
Analysis of Negative Capacitance-Based Broadband Impedance Matching for CMUTs.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):3042-3052. doi: 10.1109/TUFFC.2021.3079720. Epub 2021 Aug 27.

本文引用的文献

1
Imaging of coronary atherosclerosis: intravascular ultrasound.
Eur Heart J. 2010 Oct;31(20):2456-69. doi: 10.1093/eurheartj/ehq280. Epub 2010 Sep 7.
2
An integrated circuit with transmit beamforming flip-chip bonded to a 2-D CMUT array for 3-D ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Oct;56(10):2145-56. doi: 10.1109/TUFFC.2009.1297.
3
IVUS beyond the horizon.
EuroIntervention. 2006 May;2(1):132-42.
4
A Charge-Based Low-Power High-SNR Capacitive Sensing Interface Circuit.
IEEE Trans Circuits Syst I Regul Pap. 2008;55(7):1863-1872. doi: 10.1109/TCSI.2008.918006.
5
Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):327-42. doi: 10.1109/TUFFC.2008.652.
6
3-D ultrasound imaging using a forward-looking CMUT ring array for intravascular/intracardiac applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jun;53(6):1202-11. doi: 10.1109/tuffc.2006.1642519.
7
Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Feb;53(2):474-82. doi: 10.1109/tuffc.2006.1593387.
8
Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Dec;52(12):2235-41. doi: 10.1109/tuffc.2005.1563266.
9
Forward-viewing CMUT arrays for medical imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2004 Jul;51(7):887-95. doi: 10.1109/tuffc.2004.1320749.
10
Optimizing the beam pattern of a forward-viewing ring-annular ultrasound array for intravascular imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2002 Dec;49(12):1652-64. doi: 10.1109/tuffc.2002.1159845.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验