文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

坏死型真菌病原菌核盘菌和灰葡萄孢的基因组分析。

Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

机构信息

Unité de Recherche Génomique - Info, UR1164, INRA, Versailles, France.

出版信息

PLoS Genet. 2011 Aug;7(8):e1002230. doi: 10.1371/journal.pgen.1002230. Epub 2011 Aug 18.


DOI:10.1371/journal.pgen.1002230
PMID:21876677
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3158057/
Abstract

Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.

摘要

核盘菌和灰葡萄孢菌是两种密切相关的专性坏死型植物病原真菌,它们具有广泛的宿主范围和环境持久性。这些特性使这两个物种成为理解坏死型、广谱致病性复杂性的模式生物。尽管它们有相似之处,但这两个物种在交配行为和产生无性孢子的能力上有所不同。我们已经对一种核盘菌菌株和两种灰葡萄孢菌菌株进行了基因组测序。在这里,我们提供了对这些基因组相互之间以及与其他已测序真菌基因组进行比较分析的结果。它们的 38-39Mb 基因组包含 11860-14270 个预测基因,这两个物种之间的平均氨基酸同一性为 83%。我们已经将核盘菌的组装图谱映射到 16 条染色体上,并发现与灰葡萄孢菌基因组有大规模的共线性。与灰葡萄孢菌相比,核盘菌基因组中有 7%的部分由转座元件组成,而灰葡萄孢菌中这一比例小于 1%。与坏死过程相关的基因组合在这两个物种中是相似的,包括参与植物细胞壁降解和草酸产生的基因。对次生代谢基因簇的分析显示,与核盘菌相比,灰葡萄孢菌特有的次生代谢物的数量和多样性有所增加。次生代谢的潜在多样性可能与特定生态位的适应有关。比较基因组分析揭示了核盘菌和灰葡萄孢菌不同的性交配相容性系统的基础。交配型基因座的组织不同,它们的结构为从同宗配合到异宗配合的进化提供了证据。这些数据揭示了坏死致病性和有性交配这两个遗传复杂性状的进化和机制基础。这个资源应该有助于设计功能研究,以更好地理解是什么使这些真菌成为农业作物如此成功和持久的病原体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/f4faacdfc090/pgen.1002230.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/b3d1794fe826/pgen.1002230.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/4d88a4b21157/pgen.1002230.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/a47bc7ff089f/pgen.1002230.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/bdeaa7ac2410/pgen.1002230.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/b3eb326d40ae/pgen.1002230.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/f4faacdfc090/pgen.1002230.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/b3d1794fe826/pgen.1002230.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/4d88a4b21157/pgen.1002230.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/a47bc7ff089f/pgen.1002230.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/bdeaa7ac2410/pgen.1002230.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/b3eb326d40ae/pgen.1002230.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0624/3158057/f4faacdfc090/pgen.1002230.g006.jpg

相似文献

[1]
Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

PLoS Genet. 2011-8-18

[2]
An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

PLoS One. 2015-6-24

[3]
Prediction of pathogenicity genes involved in adaptation to a lupin host in the fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum via comparative genomics.

BMC Genomics. 2019-5-17

[4]
A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum.

BMC Genomics. 2020-1-2

[5]
A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea.

Lett Appl Microbiol. 2016-5

[6]
[Analysis of simple sequence repeats in genomes of Sclerotinia sclerotiorum and Botrytis cinerea].

Yi Chuan. 2007-9

[7]
Variable Tandem Glycine-Rich Repeats Contribute to Cell Death-Inducing Activity of a Glycosylphosphatidylinositol-Anchored Cell Wall Protein That Is Associated with the Pathogenicity of Sclerotinia sclerotiorum.

Microbiol Spectr. 2023-6-15

[8]
pH modulation differs during sunflower cotyledon colonization by the two closely related necrotrophic fungi Botrytis cinerea and Sclerotinia sclerotiorum.

Mol Plant Pathol. 2011-12-15

[9]
RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea.

Plant Biotechnol J. 2024-1

[10]
Expression of a mycoparasite protease in plant petals suppresses the petal-mediated infection by necrotrophic pathogens.

Cell Rep. 2023-11-28

引用本文的文献

[1]
Splitting Haploid Chromosomes into Different Nuclei: New Mechanisms of Adaptation in Fungi?

J Fungi (Basel). 2025-8-21

[2]
Proteomics-Based Approaches to Decipher the Molecular Strategies of : A Review.

J Fungi (Basel). 2025-8-6

[3]
Normal meiosis in the fungus Sclerotinia sclerotiorum despite the irregular distribution of haploid chromosomes between two nuclei.

Nat Commun. 2025-8-12

[4]
Development and Characterization of New SSR Markers in Using Genomic and Variant Analysis.

Pathogens. 2025-6-20

[5]
Comparison and Analysis of the Genomes of Three Strains of Isolated from Pomegranate.

Microorganisms. 2025-7-8

[6]
Disruption of triggers apoptosis and causes defects in growth, conidiogenesis, and mycoparasitism of .

Virulence. 2025-12

[7]
Kynurenine monooxygenase : a key regulator of growth, pathogenicity, and disease control in .

Front Microbiol. 2025-6-24

[8]
Decapeptide Inducer Promotes the Conidiation of Phytopathogenic via the Mps1 MAPK Signaling Pathway.

Int J Mol Sci. 2025-6-19

[9]
A Comparison of the Biotechnological Potential of Marine and Terrestrial Species of Two Orders of Sordariomycete Fungi.

Mar Biotechnol (NY). 2025-6-25

[10]
CBC Complex Regulates Hyphal Growth, Sclerotial Quantity, and Pathogenicity in the Necrotrophic Fungus .

J Fungi (Basel). 2025-6-2

本文引用的文献

[1]
Sexual development and cryptic sexuality in fungi: insights from Aspergillus species.

FEMS Microbiol Rev. 2011-10-6

[2]
Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection.

PLoS Pathog. 2011-8-18

[3]
Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.

PLoS Pathog. 2011-6-30

[4]
Flux of nitric oxide between the necrotrophic pathogen Botrytis cinerea and the host plant.

Mol Plant Pathol. 2011-1-17

[5]
The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial.

Mol Plant Pathol. 2011-1-17

[6]
Molecular phylogeny and evolution of Monilinia (Sclerotiniaceae) based on coding and noncoding rDNA sequences.

Am J Bot. 1997-5

[7]
Structure and evolution of the Fusarium mating type locus: new insights from the Gibberellafujikuroi complex.

Fungal Genet Biol. 2011-3-29

[8]
Living colors in the gray mold pathogen Botrytis cinerea: codon-optimized genes encoding green fluorescent protein and mCherry, which exhibit bright fluorescence.

Appl Environ Microbiol. 2011-3-4

[9]
Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations.

Nat Commun. 2011-2-15

[10]
Considering transposable element diversification in de novo annotation approaches.

PLoS One. 2011-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索