Unité de Recherche Génomique - Info, UR1164, INRA, Versailles, France.
PLoS Genet. 2011 Aug;7(8):e1002230. doi: 10.1371/journal.pgen.1002230. Epub 2011 Aug 18.
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
核盘菌和灰葡萄孢菌是两种密切相关的专性坏死型植物病原真菌,它们具有广泛的宿主范围和环境持久性。这些特性使这两个物种成为理解坏死型、广谱致病性复杂性的模式生物。尽管它们有相似之处,但这两个物种在交配行为和产生无性孢子的能力上有所不同。我们已经对一种核盘菌菌株和两种灰葡萄孢菌菌株进行了基因组测序。在这里,我们提供了对这些基因组相互之间以及与其他已测序真菌基因组进行比较分析的结果。它们的 38-39Mb 基因组包含 11860-14270 个预测基因,这两个物种之间的平均氨基酸同一性为 83%。我们已经将核盘菌的组装图谱映射到 16 条染色体上,并发现与灰葡萄孢菌基因组有大规模的共线性。与灰葡萄孢菌相比,核盘菌基因组中有 7%的部分由转座元件组成,而灰葡萄孢菌中这一比例小于 1%。与坏死过程相关的基因组合在这两个物种中是相似的,包括参与植物细胞壁降解和草酸产生的基因。对次生代谢基因簇的分析显示,与核盘菌相比,灰葡萄孢菌特有的次生代谢物的数量和多样性有所增加。次生代谢的潜在多样性可能与特定生态位的适应有关。比较基因组分析揭示了核盘菌和灰葡萄孢菌不同的性交配相容性系统的基础。交配型基因座的组织不同,它们的结构为从同宗配合到异宗配合的进化提供了证据。这些数据揭示了坏死致病性和有性交配这两个遗传复杂性状的进化和机制基础。这个资源应该有助于设计功能研究,以更好地理解是什么使这些真菌成为农业作物如此成功和持久的病原体。
Lett Appl Microbiol. 2016-5
J Fungi (Basel). 2025-8-21
J Fungi (Basel). 2025-8-6
Microorganisms. 2025-7-8
Front Microbiol. 2025-6-24
Mar Biotechnol (NY). 2025-6-25
FEMS Microbiol Rev. 2011-10-6
Mol Plant Pathol. 2011-1-17
Fungal Genet Biol. 2011-3-29