Suppr超能文献

侧流暗场图像中微血管密度的快速自动评估。

Rapid automatic assessment of microvascular density in sidestream dark field images.

机构信息

Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.

出版信息

Med Biol Eng Comput. 2011 Nov;49(11):1269-78. doi: 10.1007/s11517-011-0824-1. Epub 2011 Aug 31.

Abstract

The purpose of this study was to develop a rapid and fully automatic method for the assessment of microvascular density and perfusion in sidestream dark field (SDF) images. We modified algorithms previously developed by our group for microvascular density assessment and introduced a new method for microvascular perfusion assessment. To validate the new algorithm for microvascular density assessment, we reanalyzed a selection of SDF video clips (n = 325) from a study in intensive care patients and compared the results to (semi-)manually found microvascular densities. The method for microvascular perfusion assessment (temporal SDF image contrast analysis, tSICA) was tested in several video simulations and in one high quality SDF video clip where the microcirculation was imaged before and during circulatory arrest in a cardiac surgery patient. We found that the new method for microvascular density assessment was very rapid (<30 s/clip) and correlated excellently with (semi-)manually measured microvascular density. The new method for microvascular perfusion assessment (tSICA) was shown to be limited by high cell densities and velocities, which severely impedes the applicability of this method in real SDF images. Hence, here we present a validated method for rapid and fully automatic assessment of microvascular density in SDF images. The new method was shown to be much faster than the conventional (semi-)manual method. Due to current SDF imaging hardware limitations, we were not able to automatically detect microvascular perfusion.

摘要

本研究旨在开发一种快速且全自动的方法,用于评估侧流暗场 (SDF) 图像中的微血管密度和灌注。我们修改了我们小组之前开发的用于评估微血管密度的算法,并引入了一种新的微血管灌注评估方法。为了验证微血管密度评估的新算法,我们重新分析了来自重症监护患者研究的一系列 SDF 视频片段(n=325),并将结果与(半)手动发现的微血管密度进行了比较。微血管灌注评估方法(时间 SDF 图像对比分析,tSICA)在几个视频模拟和一个高质量 SDF 视频片段中进行了测试,该视频片段在心脏手术患者循环骤停前后对微循环进行了成像。我们发现,新的微血管密度评估方法非常快速(<30s/clip),与(半)手动测量的微血管密度高度相关。新的微血管灌注评估方法(tSICA)受到高细胞密度和速度的限制,这严重限制了该方法在实际 SDF 图像中的适用性。因此,我们在此提出了一种用于快速全自动评估 SDF 图像中微血管密度的验证方法。新方法比传统的(半)手动方法快得多。由于当前的 SDF 成像硬件限制,我们无法自动检测微血管灌注。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d70b/3208811/013fcf17a85c/11517_2011_824_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验