Suppr超能文献

人切割因子 I(m) 的结构暗示了其超越 UGUA 特异性 RNA 结合的功能:在可变多聚腺苷酸化和与 5' 加帽和剪接的潜在联系中发挥作用。

The structure of human cleavage factor I(m) hints at functions beyond UGUA-specific RNA binding: a role in alternative polyadenylation and a potential link to 5' capping and splicing.

机构信息

Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT, USA.

出版信息

RNA Biol. 2011 Sep-Oct;8(5):748-53. doi: 10.4161/rna.8.5.16040. Epub 2011 Sep 1.

Abstract

3'-end cleavage and subsequent polyadenylation are critical steps in mRNA maturation. The precise location where cleavage occurs (referred to as poly(A) site) is determined by a tripartite mechanism in which a A(A/U)UAAA hexamer, GU rich downstream element and UGUA upstream element are recognized by the cleavage and polyadenylation factor (CPSF), cleavage stimulation factor (CstF) and cleavage factor I(m) (CFI(m)), respectively. CFI(m) is composed of a smaller 25 kDa subunit (CFI(m)25) and a larger 59, 68 or 72 kDa subunit. CFI(m)68 interacts with CFI(m)25 through its N-terminal RNA recognition motif (RRM). We recently solved the crystal structures of CFI(m)25 bound to RNA and of a complex of CFI(m)25, the RRM domain of CFI(m)68 and RNA. Our study illustrated the molecular basis for UGUA recognition by the CFI(m) complex, suggested a possible mechanism for CFI(m) mediated alternative polyadenylation, and revealed potential links between CFI(m) and other mRNA processing factors, such as the 20 kDa subunit of the cap binding protein (CBP20), and the splicing regulator U2AF65.

摘要

3'-末端切割和随后的多聚腺苷酸化是 mRNA 成熟的关键步骤。切割发生的确切位置(称为多聚(A)位点)由三部分机制决定,其中 A(A/U)UAAA 六聚体、富含 GU 的下游元件和 UGUA 上游元件分别被切割和多聚腺苷酸化因子(CPSF)、切割刺激因子(CstF)和切割因子 I(m)(CFI(m))识别。CFI(m)由较小的 25 kDa 亚基(CFI(m)25)和较大的 59、68 或 72 kDa 亚基组成。CFI(m)68 通过其 N 端 RNA 识别基序(RRM)与 CFI(m)25 相互作用。我们最近解决了 CFI(m)25 与 RNA 结合的晶体结构以及 CFI(m)25、CFI(m)68 的 RRM 结构域和 RNA 的复合物的晶体结构。我们的研究说明了 CFI(m) 复合物识别 UGUA 的分子基础,提出了 CFI(m) 介导的可变多聚腺苷酸化的可能机制,并揭示了 CFI(m) 与其他 mRNA 加工因子之间的潜在联系,如帽子结合蛋白 (CBP20) 的 20 kDa 亚基和剪接调节因子 U2AF65。

相似文献

3
Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10062-7. doi: 10.1073/pnas.1000848107. Epub 2010 May 17.
4
An active role for splicing in 3'-end formation.
Wiley Interdiscip Rev RNA. 2011 Jul-Aug;2(4):459-70. doi: 10.1002/wrna.68. Epub 2010 Dec 16.
5
An interaction between U2AF 65 and CF I(m) links the splicing and 3' end processing machineries.
EMBO J. 2006 Oct 18;25(20):4854-64. doi: 10.1038/sj.emboj.7601331. Epub 2006 Oct 5.
6
Structural biology of poly(A) site definition.
Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):732-47. doi: 10.1002/wrna.88. Epub 2011 Apr 27.
7
A mechanism for the regulation of pre-mRNA 3' processing by human cleavage factor Im.
Mol Cell. 2003 Dec;12(6):1467-76. doi: 10.1016/s1097-2765(03)00453-2.
9
Polyadenylation site-specific differences in the activity of the neuronal βCstF-64 protein in PC-12 cells.
Gene. 2013 Oct 25;529(2):220-7. doi: 10.1016/j.gene.2013.08.007. Epub 2013 Aug 12.
10
From polyadenylation to splicing: Dual role for mRNA 3' end formation factors.
RNA Biol. 2016;13(3):259-64. doi: 10.1080/15476286.2015.1112490. Epub 2015 Nov 17.

引用本文的文献

3
A developmental mechanism to regulate alternative polyadenylation in an adult stem cell lineage.
Genes Dev. 2024 Aug 20;38(13-14):655-674. doi: 10.1101/gad.351649.124.
4
The role of alternative polyadenylation in breast cancer.
Front Genet. 2024 Jun 13;15:1377275. doi: 10.3389/fgene.2024.1377275. eCollection 2024.
5
Multiplexed single-cell characterization of alternative polyadenylation regulators.
Cell. 2024 Aug 8;187(16):4408-4425.e23. doi: 10.1016/j.cell.2024.06.005. Epub 2024 Jun 25.
6
A Developmental Mechanism to Regulate Alternative Polyadenylation in an Adult Stem Cell Lineage.
bioRxiv. 2024 Jul 10:2024.03.18.585561. doi: 10.1101/2024.03.18.585561.
7
Downregulation of CPSF6 leads to global mRNA 3' UTR shortening and enhanced antiviral immune responses.
PLoS Pathog. 2024 Feb 28;20(2):e1012061. doi: 10.1371/journal.ppat.1012061. eCollection 2024 Feb.
9
The Dynamic Poly(A) Tail Acts as a Signal Hub in mRNA Metabolism.
Cells. 2023 Feb 10;12(4):572. doi: 10.3390/cells12040572.

本文引用的文献

1
mRNA 3' end processing and more--multiple functions of mammalian cleavage factor I-68.
Wiley Interdiscip Rev RNA. 2011 Jan-Feb;2(1):79-91. doi: 10.1002/wrna.35.
2
Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression.
Wiley Interdiscip Rev RNA. 2011 Jan-Feb;2(1):22-31. doi: 10.1002/wrna.47. Epub 2010 Sep 20.
4
Hexameric architecture of CstF supported by CstF-50 homodimerization domain structure.
RNA. 2011 Mar;17(3):412-8. doi: 10.1261/rna.2481011. Epub 2011 Jan 13.
5
Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs.
Nature. 2011 Jan 6;469(7328):97-101. doi: 10.1038/nature09616. Epub 2010 Nov 17.
6
Evidence that cleavage factor Im is a heterotetrameric protein complex controlling alternative polyadenylation.
Genes Cells. 2010 Sep 1;15(9):1003-13. doi: 10.1111/j.1365-2443.2010.01436.x. Epub 2010 Jul 29.
7
Arginine methylation in subunits of mammalian pre-mRNA cleavage factor I.
RNA. 2010 Aug;16(8):1646-59. doi: 10.1261/rna.2164210. Epub 2010 Jun 18.
8
Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs.
Nat Struct Mol Biol. 2010 Jul;17(7):853-61. doi: 10.1038/nsmb.1814. Epub 2010 Jun 6.
9
Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing.
Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10062-7. doi: 10.1073/pnas.1000848107. Epub 2010 May 17.
10
ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33. doi: 10.1093/nar/gkq399. Epub 2010 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验