Suppr超能文献

通过酯化对底物进行泛素化。

Ubiquitination of substrates by esterification.

机构信息

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Traffic. 2012 Jan;13(1):19-24. doi: 10.1111/j.1600-0854.2011.01269.x. Epub 2011 Sep 13.

Abstract

Post-translational modification by ubiquitination determines intracellular location and fate of numerous proteins, thus impacting a diverse array of physiologic functions. Past dogma has been that ubiquitin was only coupled to substrates by isopeptide bonds to internal lysine residues or less frequently peptide bonds to the N-terminus. Enigmatically, however, several proteins lacking lysines had been reported to retain ubiquitin-dependent fates. Resolution of this paradox was afforded by recent observations that ubiquitination of substrates can also occur on cysteine or serine and threonine residues by thio- or oxy-ester bond formation, respectively (collectively called esterification). Although chemically possible, these bonds were considered too labile to be of physiological relevance. In this review we discuss recent evidence for the ubiquitination of protein substrates by esterification and speculate on its mechanism and its physiological importance.

摘要

泛素化修饰通过与赖氨酸残基内部或 N 末端的肽键连接,决定了许多蛋白质的细胞内位置和命运,从而影响了广泛的生理功能。过去的传统观点认为,泛素仅通过异肽键与底物结合。然而,令人费解的是,已经有报道称一些缺乏赖氨酸的蛋白质仍然保留着泛素依赖性命运。最近的观察结果解决了这一悖论,即通过硫酯或氧酯键形成(统称为酯化),底物的泛素化也可以发生在半胱氨酸、丝氨酸和苏氨酸残基上。虽然在化学上是可能的,但这些键被认为太不稳定,没有生理相关性。在这篇综述中,我们讨论了最近关于蛋白质底物通过酯化进行泛素化的证据,并推测了其机制及其生理重要性。

相似文献

1
Ubiquitination of substrates by esterification.
Traffic. 2012 Jan;13(1):19-24. doi: 10.1111/j.1600-0854.2011.01269.x. Epub 2011 Sep 13.
2
Structural Diversity of Ubiquitin E3 Ligase.
Molecules. 2021 Nov 4;26(21):6682. doi: 10.3390/molecules26216682.
3
Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34.
Mol Cell Biol. 2010 May;30(10):2316-29. doi: 10.1128/MCB.01094-09. Epub 2010 Mar 1.
4
UbcH5 Interacts with Substrates to Participate in Lysine Selection with the E3 Ubiquitin Ligase CHIP.
Biochemistry. 2020 Jun 9;59(22):2078-2088. doi: 10.1021/acs.biochem.0c00084. Epub 2020 May 27.
5
S-Nitrosylation at the active site decreases the ubiquitin-conjugating activity of ubiquitin-conjugating enzyme E2 D1 (UBE2D1), an ERAD-associated protein.
Biochem Biophys Res Commun. 2020 Apr 16;524(4):910-915. doi: 10.1016/j.bbrc.2020.02.011. Epub 2020 Feb 10.
6
Biochemical and Proteomic Analysis of Ubiquitination of Hsc70 and Hsp70 by the E3 Ligase CHIP.
PLoS One. 2015 May 26;10(5):e0128240. doi: 10.1371/journal.pone.0128240. eCollection 2015.
7
Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates.
J Cell Biol. 2009 Nov 30;187(5):655-68. doi: 10.1083/jcb.200908036.
8
Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin.
Mol Cell. 2010 Aug 27;39(4):548-59. doi: 10.1016/j.molcel.2010.07.027.
9
Kinetics of the transfer of ubiquitin from UbcH7 to E6AP.
Biochemistry. 2010 Feb 23;49(7):1361-3. doi: 10.1021/bi9014693.
10
A new FRET-based platform to track substrate ubiquitination by fluorescence.
J Biol Chem. 2021 Jan-Jun;296:100230. doi: 10.1074/jbc.RA120.016858. Epub 2021 Jan 7.

引用本文的文献

1
Catalysis of non-canonical protein ubiquitylation by the ARIH1 ubiquitin ligase.
Biochem J. 2023 Nov 29;480(22):1817-1831. doi: 10.1042/BCJ20230373.
2
Thioester and Oxyester Linkages in the Ubiquitin System.
Methods Mol Biol. 2023;2602:3-18. doi: 10.1007/978-1-0716-2859-1_1.
3
Non-lysine ubiquitylation: Doing things differently.
Front Mol Biosci. 2022 Sep 19;9:1008175. doi: 10.3389/fmolb.2022.1008175. eCollection 2022.
4
Harnessing the ubiquitin code to respond to environmental cues.
Essays Biochem. 2022 Aug 5;66(2):111-121. doi: 10.1042/EBC20210094.
5
LUBAC: a new player in polyglucosan body disease.
Biochem Soc Trans. 2021 Nov 1;49(5):2443-2454. doi: 10.1042/BST20210838.
6
Primary restriction of S-RNase cytotoxicity by a stepwise ubiquitination and degradation pathway in Petunia hybrida.
New Phytol. 2021 Aug;231(3):1249-1264. doi: 10.1111/nph.17438. Epub 2021 May 30.
8
Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class.
Chembiochem. 2021 Jun 15;22(12):2011-2031. doi: 10.1002/cbic.202000787. Epub 2021 Mar 18.
9
Advances on Plant Ubiquitylome-From Mechanism to Application.
Int J Mol Sci. 2020 Oct 24;21(21):7909. doi: 10.3390/ijms21217909.
10
Chain reactions: molecular mechanisms of RBR ubiquitin ligases.
Biochem Soc Trans. 2020 Aug 28;48(4):1737-1750. doi: 10.1042/BST20200237.

本文引用的文献

1
Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling.
Traffic. 2011 Aug;12(8):1067-83. doi: 10.1111/j.1600-0854.2011.01217.x. Epub 2011 Jun 13.
2
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids.
Nature. 2011 Jun 2;474(7349):105-8. doi: 10.1038/nature09966. Epub 2011 May 1.
3
Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids.
Mol Cell. 2010 Dec 22;40(6):917-26. doi: 10.1016/j.molcel.2010.11.033.
4
E2s: structurally economical and functionally replete.
Biochem J. 2011 Jan 1;433(1):31-42. doi: 10.1042/BJ20100985.
6
Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin.
Mol Cell. 2010 Aug 27;39(4):548-59. doi: 10.1016/j.molcel.2010.07.027.
9
Priming and extending: a UbcH5/Cdc34 E2 handoff mechanism for polyubiquitination on a SCF substrate.
Mol Cell. 2010 Mar 26;37(6):784-96. doi: 10.1016/j.molcel.2010.02.025.
10
Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates.
J Cell Biol. 2009 Nov 30;187(5):655-68. doi: 10.1083/jcb.200908036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验