Suppr超能文献

一种神经群体中复杂序列学习与再现的模型。

A model for complex sequence learning and reproduction in neural populations.

作者信息

Verduzco-Flores Sergio Oscar, Bodner Mark, Ermentrout Bard

机构信息

University of Colorado, Boulder, CO, USA.

出版信息

J Comput Neurosci. 2012 Jun;32(3):403-23. doi: 10.1007/s10827-011-0360-x. Epub 2011 Sep 2.

Abstract

Temporal patterns of activity which repeat above chance level in the brains of vertebrates and in the mammalian neocortex have been reported experimentally. This temporal structure is thought to subserve functions such as movement, speech, and generation of rhythms. Several studies aim to explain how particular sequences of activity are learned, stored, and reproduced. The learning of sequences is usually conceived as the creation of an excitation pathway within a homogeneous neuronal population, but models embodying the autonomous function of such a learning mechanism are fraught with concerns about stability, robustness, and biological plausibility. We present two related computational models capable of learning and reproducing sequences which come from external stimuli. Both models assume that there exist populations of densely interconnected excitatory neurons, and that plasticity can occur at the population level. The first model uses temporally asymmetric Hebbian plasticity to create excitation pathways between populations in response to activation from an external source. The transition of the activity from one population to the next is permitted by the interplay of excitatory and inhibitory populations, which results in oscillatory behavior that seems to agree with experimental findings in the mammalian neocortex. The second model contains two layers, each one like the network used in the first model, with unidirectional excitatory connections from the first to the second layer experiencing Hebbian plasticity. Input sequences presented in the second layer become associated with the ongoing first layer activity, so that this activity can later elicit the the presented sequence in the absence of input. We explore the dynamics of these models, and discuss their potential implications, particularly to working memory, oscillations, and rhythm generation.

摘要

实验报告显示,脊椎动物大脑和哺乳动物新皮层中存在高于随机水平重复出现的活动时间模式。这种时间结构被认为有助于实现诸如运动、言语和节律生成等功能。有几项研究旨在解释特定活动序列是如何被学习、存储和再现的。序列学习通常被认为是在同质神经元群体中创建一条兴奋通路,但体现这种学习机制自主功能的模型在稳定性、稳健性和生物学合理性方面存在诸多问题。我们提出了两个相关的计算模型,它们能够学习和再现来自外部刺激的序列。这两个模型都假定存在大量紧密互连的兴奋性神经元群体,并且可塑性可以在群体水平上发生。第一个模型使用时间不对称的赫布可塑性,以响应来自外部源的激活,在群体之间创建兴奋通路。兴奋性和抑制性群体的相互作用允许活动从一个群体过渡到下一个群体,这导致了振荡行为,这似乎与哺乳动物新皮层的实验结果一致。第二个模型包含两层,每层都类似于第一个模型中使用的网络,从第一层到第二层的单向兴奋性连接经历赫布可塑性。在第二层呈现的输入序列与正在进行的第一层活动相关联,这样,在没有输入的情况下,这种活动随后可以引发呈现的序列。我们探索了这些模型的动力学,并讨论了它们的潜在影响,特别是对工作记忆、振荡和节律生成的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验