Suppr超能文献

能否利用药房数据来估算慢性病的流行率?多种数据源的比较。

Can we use the pharmacy data to estimate the prevalence of chronic conditions? a comparison of multiple data sources.

机构信息

Agency of Public Health, Lazio Region; via di S. Costanza 53, 00198 Rome, Italy.

出版信息

BMC Public Health. 2011 Sep 5;11:688. doi: 10.1186/1471-2458-11-688.

Abstract

BACKGROUND

The estimate of the prevalence of the most common chronic conditions (CCs) is calculated using direct methods such as prevalence surveys but also indirect methods using health administrative databases.The aim of this study is to provide estimates prevalence of CCs in Lazio region of Italy (including Rome), using the drug prescription's database and to compare these estimates with those obtained using other health administrative databases.

METHODS

Prevalence of CCs was estimated using pharmacy data (PD) using the Anathomical Therapeutic Chemical Classification System (ATC).Prevalences estimate were compared with those estimated by hospital information system (HIS) using list of ICD9-CM diagnosis coding, registry of exempt patients from health care cost for pathology (REP) and national health survey performed by the Italian bureau of census (ISTAT).

RESULTS

From the PD we identified 20 CCs. About one fourth of the population received a drug for treating a cardiovascular disease, 9% for treating a rheumatologic conditions.The estimated prevalences using the PD were usually higher that those obtained with one of the other sources. Regarding the comparison with the ISTAT survey there was a good agreement for cardiovascular disease, diabetes and thyroid disorder whereas for rheumatologic conditions, chronic respiratory illnesses, migraine and Alzheimer's disease, the prevalence estimates were lower than those estimated by ISTAT survey. Estimates of prevalences derived by the HIS and by the REP were usually lower than those of the PD (but malignancies, chronic renal diseases).

CONCLUSION

Our study showed that PD can be used to provide reliable prevalence estimates of several CCs in the general population.

摘要

背景

最常见慢性病(CCs)的患病率估计是使用直接方法(如患病率调查)计算的,但也可以使用健康管理数据库的间接方法。本研究旨在使用药物处方数据库为意大利拉齐奥地区(包括罗马)提供 CCs 的患病率估计,并将这些估计与使用其他健康管理数据库获得的估计进行比较。

方法

使用解剖治疗化学分类系统(ATC)从药房数据(PD)中估计 CCs 的患病率。使用国际疾病分类第 9 版-临床修正(ICD9-CM)诊断编码列表、免除医疗费用的病理学患者登记处(REP)和意大利统计局进行的全国健康调查的医院信息系统(HIS)来比较患病率估计。

结果

从 PD 中我们确定了 20 种 CCs。大约四分之一的人口接受了治疗心血管疾病的药物,9%的人接受了治疗风湿性疾病的药物。使用 PD 估计的患病率通常高于其他来源之一获得的患病率。关于与 ISTAT 调查的比较,心血管疾病、糖尿病和甲状腺疾病的估计值一致性较好,而风湿性疾病、慢性呼吸道疾病、偏头痛和阿尔茨海默病的患病率估计值则低于 ISTAT 调查的估计值。HIS 和 REP 得出的患病率估计通常低于 PD(但恶性肿瘤、慢性肾脏疾病除外)。

结论

我们的研究表明,PD 可用于为普通人群提供几种 CCs 的可靠患病率估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fbc/3223740/f29048cff147/1471-2458-11-688-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验