Suppr超能文献

基于显著特征匹配的高效稳健的磁共振数据非局部均值去噪。

Efficient and robust nonlocal means denoising of MR data based on salient features matching.

机构信息

Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, USA.

出版信息

Comput Methods Programs Biomed. 2012 Feb;105(2):131-44. doi: 10.1016/j.cmpb.2011.07.014. Epub 2011 Sep 8.

Abstract

The nonlocal means (NLM) filter has become a popular approach for denoising medical images due to its excellent performance. However, its heavy computational load has been an important shortcoming preventing its use. NLM works by averaging pixels in nonlocal vicinities, weighting them depending on their similarity with the pixel of interest. This similarity is assessed based on the squared difference between corresponding pixels inside local patches centered at the locations compared. Our proposal is to reduce the computational load of this comparison by checking only a subset of salient features associated to the pixels, which suffice to estimate the actual difference as computed in the original NLM approach. The speedup achieved with respect to the original implementation is over one order of magnitude, and, when compared to more recent NLM improvements for MRI denoising, our method is nearly twice as fast. At the same time, we evidence from both synthetic and in vivo experiments that computing of appropriate salient features make the estimation of NLM weights more robust to noise. Consequently, we are able to improve the outcomes achieved with recent state of the art techniques for a wide range of realistic Signal-to-Noise ratio scenarios like diffusion MRI. Finally, the statistical characterization of the features computed allows to get rid of some of the heuristics commonly used for parameter tuning.

摘要

非局部均值(NLM)滤波器因其出色的性能而成为医学图像去噪的一种流行方法。然而,其计算量庞大一直是阻碍其应用的一个重要缺点。NLM 通过在非局部邻域中对像素进行平均,并根据与感兴趣像素的相似性对其进行加权来工作。这种相似性是基于在比较的位置处以局部补丁为中心的相应像素之间的平方差来评估的。我们的建议是通过仅检查与像素相关的显著特征的子集来减少这种比较的计算负载,这足以估计在原始 NLM 方法中计算出的实际差异。与原始实现相比,实现的加速超过一个数量级,并且与用于 MRI 去噪的最新 NLM 改进相比,我们的方法快近两倍。同时,我们从合成和体内实验中证明,计算适当的显著特征可以使 NLM 权重的估计对噪声更加稳健。因此,我们能够在广泛的现实信噪比场景下(如扩散 MRI),提高与最新技术水平相关的结果。最后,计算出的特征的统计特性允许摆脱通常用于参数调整的一些启发式方法。

相似文献

6
Denoising of Diffusion MRI Data via Graph Framelet Matching in x-q Space.基于 x-q 空间图框匹配的扩散磁共振数据去噪。
IEEE Trans Med Imaging. 2019 Dec;38(12):2838-2848. doi: 10.1109/TMI.2019.2915629. Epub 2019 May 8.
7
Nonlocal means-based denoising for medical images.基于非局部均值的医学图像去噪。
Comput Math Methods Med. 2012;2012:438617. doi: 10.1155/2012/438617. Epub 2012 Feb 20.

引用本文的文献

4
A CT Scan Harmonization Technique to Detect Emphysema and Small Airway Diseases.一种用于检测肺气肿和小气道疾病的CT扫描协调技术。
Image Anal Mov Organ Breast Thorac Images (2018). 2018 Sep;11040:180-190. doi: 10.1007/978-3-030-00946-5_19. Epub 2018 Sep 12.
7
Separate Memory-Enhancing Effects of Reward and Strategic Encoding.奖励和策略性编码的独立记忆增强效应。
J Cogn Neurosci. 2019 Nov;31(11):1658-1673. doi: 10.1162/jocn_a_01438. Epub 2019 Jun 28.
9
Gradient Boosted Trees for Corrective Learning.用于矫正学习的梯度提升树
Mach Learn Med Imaging. 2017 Sep;10541:203-211. doi: 10.1007/978-3-319-67389-9_24. Epub 2017 Sep 7.

本文引用的文献

2
DWI filtering using joint information for DTI and HARDI.基于 DTI 和 HARDI 的联合信息进行 DWI 滤波。
Med Image Anal. 2010 Apr;14(2):205-18. doi: 10.1016/j.media.2009.11.001. Epub 2009 Nov 14.
4
Nonlocal means-based speckle filtering for ultrasound images.基于非局部均值的超声图像斑点滤波
IEEE Trans Image Process. 2009 Oct;18(10):2221-9. doi: 10.1109/TIP.2009.2024064. Epub 2009 May 27.
5
PRINCIPAL COMPONENTS FOR NON-LOCAL MEANS IMAGE DENOISING.非局部均值图像去噪的主成分
Proc Int Conf Image Proc. 2008;2008:1728-1731. doi: 10.1109/ICIP.2008.4712108.
7
Impact of Rician adapted Non-Local Means filtering on HARDI.莱斯适应非局部均值滤波对高分辨率扩散成像的影响。
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):122-30. doi: 10.1007/978-3-540-85990-1_15.
8
Efficient nonlocal means for denoising of textural patterns.用于纹理模式去噪的高效非局部均值方法。
IEEE Trans Image Process. 2008 Jul;17(7):1083-92. doi: 10.1109/TIP.2008.924281.
9
3D wavelet subbands mixing for image denoising.用于图像去噪的3D小波子带混合
Int J Biomed Imaging. 2008;2008:590183. doi: 10.1155/2008/590183.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验