Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, United States.
Biochemistry. 2011 Oct 25;50(42):9158-66. doi: 10.1021/bi2013382. Epub 2011 Sep 27.
The reversible phosphorolysis of uridine to generate uracil and ribose 1-phosphate is catalyzed by uridine phosphorylase and is involved in the pyrimidine salvage pathway. We define the reaction mechanism of uridine phosphorylase from Trypanosoma cruzi by steady-state and pre-steady-state kinetics, pH-rate profiles, kinetic isotope effects from uridine, and solvent deuterium isotope effects. Initial rate and product inhibition patterns suggest a steady-state random kinetic mechanism. Pre-steady-state kinetics indicated no rate-limiting step after formation of the enzyme-products ternary complex, as no burst in product formation is observed. The limiting single-turnover rate constant equals the steady-state turnover number; thus, chemistry is partially or fully rate limiting. Kinetic isotope effects with [1'-(3)H]-, [1'-(14)C]-, and [5'-(14)C,1,3-(15)N(2)]uridine gave experimental values of (α-T)(V/K)(uridine) = 1.063, (14)(V/K)(uridine) = 1.069, and (15,β-15)(V/K)(uridine) = 1.018, in agreement with an A(N)D(N) (S(N)2) mechanism where chemistry contributes significantly to the overall rate-limiting step of the reaction. Density functional theory modeling of the reaction in gas phase supports an A(N)D(N) mechanism. Solvent deuterium kinetic isotope effects were unity, indicating that no kinetically significant proton transfer step is involved at the transition state. In this N-ribosyl transferase, proton transfer to neutralize the leaving group is not part of transition state formation, consistent with an enzyme-stabilized anionic uracil as the leaving group. Kinetic analysis as a function of pH indicates one protonated group essential for catalysis and for substrate binding.
尿苷经尿苷磷酸化酶可逆地磷酸解生成尿嘧啶和核糖 1-磷酸,这一过程参与嘧啶补救途径。我们通过稳态和预稳态动力学、pH 速率曲线、尿苷的动力学同位素效应以及溶剂氘同位素效应,定义了克氏锥虫尿苷磷酸化酶的反应机制。初始速率和产物抑制模式表明存在稳态随机动力学机制。预稳态动力学表明,在形成酶-产物三元复合物后没有限速步骤,因为没有观察到产物形成的爆发。限速单轮周转率常数等于稳态周转率;因此,化学反应部分或完全受到限速。用[1'-(3)H]-、[1'-(14)C]-和[5'-(14)C,1,3-(15)N(2)]尿苷进行的动力学同位素效应实验值为(α-T)(V/K)(尿苷)=1.063、(14)(V/K)(尿苷)=1.069 和(15,β-15)(V/K)(尿苷)=1.018,与 A(N)D(N)(S(N)2)机制一致,其中化学在反应的整体限速步骤中贡献显著。气相反应的密度泛函理论建模支持 A(N)D(N)机制。溶剂氘动力学同位素效应为 1,表明过渡态中不涉及任何动力学上显著的质子转移步骤。在这种 N-核糖基转移酶中,质子转移用于中和离去基团不是过渡态形成的一部分,与酶稳定的带负电荷的尿嘧啶作为离去基团一致。作为 pH 函数的动力学分析表明,催化和底物结合都需要一个质子化基团。