Department of Psychology, The University of Western Ontario London, ON, Canada.
Front Hum Neurosci. 2011 Aug 31;5:92. doi: 10.3389/fnhum.2011.00092. eCollection 2011.
Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal-occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements.
神经心理学证据表明,不同的大脑区域可能参与指向视觉目标的运动(例如,指向或伸手),以及基于以自我为中心的视觉信息的运动(例如,绘制或复制)。在这里,我们使用 fMRI 来研究健康志愿者这两种类型的运动的神经相关性。受试者(n=14)在手有或没有关于其手部运动的视觉反馈的情况下,在手定向任务(将光标移动到目标点)或以自我为中心的任务(将光标移动到两个远程目标点之间的距离和方向)中执行右手运动。运动由与磁共振兼容的触摸面板监测。全脑分析显示,在以自我为中心的条件下进行运动导致左侧顶内沟(IPS)底部、IPS 后部、双侧背侧运动前皮质(PMd)和外侧枕叶复合体(LOC)的活动增加。在目标定向和以自我为中心的条件下的视觉反馈都导致 MT+、上顶枕叶皮质(SPOC)和 IPS(均为双侧)的活动增加。此外,我们发现视觉反馈对目标定向与以自我为中心条件下的大脑活动的影响不同,特别是在前运动辅助区、PMd、IPS 和顶枕叶皮质。我们的结果与以前的发现相结合,表明 LOC 是自我为中心的视觉编码所必需的,SPOC 参与视觉反馈控制。目标定向和以自我为中心的视觉反馈条件之间的大脑活动差异可能与视觉反馈控制的行为差异有关。我们的结果提高了对 LOC 使用的视觉坐标系的理解。此外,由于以自我为中心任务的性质,我们的结果与对运动的幅度估计和向量编码的神经基质的理解有关。