Suppr超能文献

在拥挤的体内环境中通过细胞内核磁共振波谱技术探索弱、瞬时的蛋白质-蛋白质相互作用。

Exploring weak, transient protein--protein interactions in crowded in vivo environments by in-cell nuclear magnetic resonance spectroscopy.

机构信息

Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, United States.

出版信息

Biochemistry. 2011 Nov 1;50(43):9225-36. doi: 10.1021/bi201287e. Epub 2011 Oct 5.

Abstract

Biology relies on functional interplay of proteins in the crowded and heterogeneous environment inside cells, and functional protein interactions are often weak and transient. Thus, methods that preserve these interactions and provide information about them are needed. In-cell nuclear magnetic resonance (NMR) spectroscopy is an attractive method for studying a protein's behavior in cells because it may provide residue-level structural and dynamic information, yet several factors limit the feasibility of protein NMR spectroscopy in cells; among them, slow rotational diffusion has emerged as the most important. In this paper, we seek to elucidate the causes of the dramatically slow protein tumbling in cells and in so doing to gain insight into how the intracellular viscosity and weak, transient interactions modulate protein mobility. To address these questions, we characterized the rotational diffusion of three model globular proteins in Escherichia coli cells using two-dimensional heteronuclear NMR spectroscopy. These proteins have a similar molecular size and globular fold but very different surface properties, and indeed, they show very different rotational diffusion in the E. coli intracellular environment. Our data are consistent with an intracellular viscosity approximately 8 times that of water, too low to be a limiting factor for observation of small globular proteins by in-cell NMR spectroscopy. Thus, we conclude that transient interactions with cytoplasmic components significantly and differentially affect the mobility of proteins and therefore their NMR detectability. Moreover, we suggest that an intricate interplay of total protein charge and hydrophobic interactions plays a key role in regulating these weak intermolecular interactions in cells.

摘要

生物学依赖于蛋白质在细胞内拥挤和不均匀环境中的功能相互作用,而功能蛋白相互作用通常较弱且短暂。因此,需要能够保留这些相互作用并提供相关信息的方法。细胞内核磁共振(NMR)光谱学是一种研究蛋白质在细胞内行为的有吸引力的方法,因为它可以提供残基水平的结构和动态信息,但有几个因素限制了蛋白质 NMR 光谱学在细胞中的可行性;其中,缓慢的旋转扩散已成为最重要的因素。在本文中,我们试图阐明导致蛋白质在细胞中旋转扩散明显变慢的原因,并由此深入了解细胞内粘度和弱的、短暂的相互作用如何调节蛋白质的流动性。为了解决这些问题,我们使用二维异核 NMR 光谱法对三种模型球状蛋白在大肠杆菌细胞中的旋转扩散进行了表征。这些蛋白质具有相似的分子大小和球状折叠,但表面性质却非常不同,实际上,它们在大肠杆菌细胞内环境中的旋转扩散差异很大。我们的数据与细胞内粘度约为水的 8 倍一致,这一数值太低,不足以成为细胞内 NMR 光谱法观察小球状蛋白质的限制因素。因此,我们得出结论,与细胞质成分的短暂相互作用显著且不同地影响蛋白质的流动性,从而影响它们的 NMR 可检测性。此外,我们还提出,总蛋白质电荷和疏水相互作用的复杂相互作用在调节细胞中这些弱的分子间相互作用方面起着关键作用。

相似文献

2
(19) F NMR spectroscopy as a probe of cytoplasmic viscosity and weak protein interactions in living cells.
Chemistry. 2013 Sep 16;19(38):12705-10. doi: 10.1002/chem.201301657. Epub 2013 Aug 6.
3
Quantification of size effect on protein rotational mobility in cells by F NMR spectroscopy.
Anal Bioanal Chem. 2018 Jan;410(3):869-874. doi: 10.1007/s00216-017-0745-4. Epub 2017 Nov 28.
4
In-cell NMR spectroscopy in Escherichia coli.
Methods Mol Biol. 2012;831:261-77. doi: 10.1007/978-1-61779-480-3_15.
5
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
6
Intracellular pH modulates quinary structure.
Protein Sci. 2015 Nov;24(11):1748-55. doi: 10.1002/pro.2765. Epub 2015 Aug 30.
7
Physicochemical code for quinary protein interactions in .
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4556-E4563. doi: 10.1073/pnas.1621227114. Epub 2017 May 23.
8
Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy.
Chembiochem. 2011 May 2;12(7):1043-8. doi: 10.1002/cbic.201100063. Epub 2011 Mar 29.
9
Translational and rotational diffusion of a small globular protein under crowded conditions.
J Phys Chem B. 2009 Oct 8;113(40):13390-2. doi: 10.1021/jp907744m.
10
NMR-detected brownian dynamics of αB-crystallin over a wide range of concentrations.
Biophys J. 2015 Jan 6;108(1):98-106. doi: 10.1016/j.bpj.2014.11.1858.

引用本文的文献

1
Crowding-induced stabilization and destabilization in a single protein.
Protein Sci. 2025 May;34(5):e70126. doi: 10.1002/pro.70126.
2
Probing Electrostatic and Hydrophobic Associative Interactions in Cells.
J Phys Chem B. 2024 Nov 7;128(44):10861-10869. doi: 10.1021/acs.jpcb.4c05990. Epub 2024 Oct 30.
3
Ubiquitin's Conformational Heterogeneity as Discerned by Nuclear Magnetic Resonance Spectroscopy.
Chembiochem. 2024 Dec 16;25(24):e202400508. doi: 10.1002/cbic.202400508. Epub 2024 Oct 17.
4
Analysis of Fluorescent Proteins for Observing Single Gene Locus in a Live and Fixed Cell.
J Phys Chem B. 2024 Jul 18;128(28):6730-6741. doi: 10.1021/acs.jpcb.4c01816. Epub 2024 Jul 5.
6
Characterizing Transient Protein-Protein Interactions by Trp-Cys Quenching and Computer Simulations.
J Phys Chem Lett. 2022 Nov 3;13(43):10175-10182. doi: 10.1021/acs.jpclett.2c02723. Epub 2022 Oct 24.
8
Physicochemical classification of organisms.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2122957119. doi: 10.1073/pnas.2122957119. Epub 2022 May 2.
9
NMR Provides Unique Insight into the Functional Dynamics and Interactions of Intrinsically Disordered Proteins.
Chem Rev. 2022 May 25;122(10):9331-9356. doi: 10.1021/acs.chemrev.1c01023. Epub 2022 Apr 21.
10

本文引用的文献

1
Macromolecular crowding fails to fold a globular protein in cells.
J Am Chem Soc. 2011 Jun 1;133(21):8082-5. doi: 10.1021/ja201206t. Epub 2011 May 10.
2
Protein crowding tunes protein stability.
J Am Chem Soc. 2011 May 11;133(18):7116-20. doi: 10.1021/ja200067p. Epub 2011 Apr 20.
3
Protein interactions in the Escherichia coli cytosol: an impediment to in-cell NMR spectroscopy.
Chembiochem. 2011 May 2;12(7):1043-8. doi: 10.1002/cbic.201100063. Epub 2011 Mar 29.
4
Topology of protein interaction network shapes protein abundances and strengths of their functional and nonspecific interactions.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4258-63. doi: 10.1073/pnas.1009392108. Epub 2011 Feb 22.
5
Ultra-weak reversible protein-protein interactions.
Methods. 2011 May;54(1):157-66. doi: 10.1016/j.ymeth.2011.02.006. Epub 2011 Feb 19.
6
Internal and global protein motion assessed with a fusion construct and in-cell NMR spectroscopy.
Chembiochem. 2011 Feb 11;12(3):390-1. doi: 10.1002/cbic.201000610. Epub 2010 Dec 15.
7
In-cell protein NMR and protein leakage.
Proteins. 2011 Feb;79(2):347-51. doi: 10.1002/prot.22906.
8
Protein folding in the cell: challenges and progress.
Curr Opin Struct Biol. 2011 Feb;21(1):32-41. doi: 10.1016/j.sbi.2010.11.001. Epub 2010 Nov 26.
9
NMR studies on domain diffusion and alignment in modular GB1 repeats.
Biophys J. 2010 Oct 20;99(8):2636-46. doi: 10.1016/j.bpj.2010.08.036.
10
Macromolecule diffusion and confinement in prokaryotic cells.
Curr Opin Biotechnol. 2011 Feb;22(1):117-26. doi: 10.1016/j.copbio.2010.09.009. Epub 2010 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验