Suppr超能文献

高迁移率族蛋白 B1 促进体外内皮细胞的血管生成行为,并改善体内缺血性损伤后的肌肉灌注。

High mobility group box 1 promotes endothelial cell angiogenic behavior in vitro and improves muscle perfusion in vivo in response to ischemic injury.

机构信息

Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Vasc Surg. 2012 Jan;55(1):180-91. doi: 10.1016/j.jvs.2011.07.072. Epub 2011 Sep 23.

Abstract

OBJECTIVES

The angiogenic drive in skeletal muscle ischemia remains poorly understood. Innate inflammatory pathways are activated during tissue injury and repair, suggesting that this highly conserved pathway may be involved in ischemia-induced angiogenesis. We hypothesize that one of the endogenous ligands for innate immune signaling, high mobility group box 1 (HMGB1), in combination with autophagic responses to hypoxia or nutrient deprivation, plays an important role in angiogenesis.

METHODS

Human dermal microvascular endothelial cells (ECs) were cultured in normoxia or hypoxia (1% oxygen). Immunocytochemical analysis of HMGB1 subcellular localization, evaluation of tube formation, and Western blot analysis of myotubule light-chain 3I (LC3I) conversion to LC3II, as a marker of autophagy, were conducted. 3-Methyladenine (3MA), chloroquine, or rapamycin were administered to inhibit or promote autophagy, respectively. In vivo, a murine hind limb ischemia model was performed. Muscle samples were collected at 4 hours to evaluate for nuclear HMGB1 and at 14 days to examine endothelial density. Perfusion recovery in the hind limbs was calculated by laser Doppler perfusion imaging (LDPI).

RESULTS

Hypoxic ECs exhibited reduced nuclear HMGB1 staining compared with normoxic cells (mean fluorescence intensity, 186.9 ± 17.1 vs 236.0 ± 1.6, P = .01) with a concomitant increase in cytosolic staining. HMGB1 treatment of ECs enhanced tube formation, an angiogenic phenotype of ECs. Neutralization of endogenous HMGB1 markedly impaired tube formation and inhibited LC3II formation. Inhibition of autophagy with 3MA or chloroquine abrogated tube formation, whereas its induction with rapamycin enhanced tubing and promoted HMGB1 translocation. In vivo, ischemic skeletal muscle showed reduced numbers of HMGB1-positive myocyte nuclei compared with nonischemic muscle (34.9% ± 1.9% vs 51.7% ± 2.0%, P < .001). Injection of HMGB1 into ischemic hind limbs increased perfusion recovery by 21% and increased EC density (49.2 ± 4.1 vs 34.2 ± 3.4 ECs/high-powered field, respectively; P = .02) at 14 days compared with control hind limbs.

CONCLUSIONS

Nuclear release of HMGB1 and autophagy occur in ECs in response to hypoxia or serum depletion. HMGB1 and autophagy are necessary and likely play an interdependent role in promoting the angiogenic behavior of ECs. In vivo, HMGB1 promotes perfusion recovery and increased EC density after ischemic injury. These findings suggest a possible mechanistic link between autophagy and HMGB1 in EC angiogenic behavior and support the importance of innate immune pathways in angiogenesis.

摘要

目的

骨骼肌缺血的血管生成驱动因素仍知之甚少。组织损伤和修复过程中会激活固有炎症途径,这表明这种高度保守的途径可能参与了缺血诱导的血管生成。我们假设,固有免疫信号的内源性配体之一,高迁移率族蛋白 B1(HMGB1),与缺氧或营养缺乏时的自噬反应相结合,在血管生成中发挥重要作用。

方法

在常氧或低氧(1%氧气)条件下培养人真皮微血管内皮细胞(ECs)。进行 HMGB1 亚细胞定位的免疫细胞化学分析,评估管形成,并用 Western blot 分析肌球蛋白轻链 3I(LC3I)转化为 LC3II,作为自噬的标志物。用 3-甲基腺嘌呤(3MA)、氯喹或雷帕霉素分别抑制或促进自噬。在体内,进行小鼠后肢缺血模型。在 4 小时时采集肌肉样本以评估核 HMGB1,并在 14 天时检查内皮细胞密度。通过激光多普勒灌注成像(LDPI)计算后肢的灌注恢复。

结果

与常氧细胞相比,低氧 ECs 的核 HMGB1 染色减少(平均荧光强度,186.9 ± 17.1 与 236.0 ± 1.6,P =.01),同时胞质染色增加。HMGB1 处理 ECs 增强了管形成,这是 ECs 的一种血管生成表型。内源性 HMGB1 的中和显着抑制管形成并抑制 LC3II 的形成。用 3MA 或氯喹抑制自噬会破坏管形成,而用雷帕霉素诱导自噬则增强管形成并促进 HMGB1 易位。在体内,与非缺血肌肉相比,缺血骨骼肌中的 HMGB1 阳性肌细胞核数量减少(34.9% ± 1.9%与 51.7% ± 2.0%,P <.001)。与对照后肢相比,将 HMGB1 注射到缺血后肢可使灌注恢复增加 21%,并使 EC 密度增加(49.2 ± 4.1 与 34.2 ± 3.4 个 EC/高倍视野,分别;P =.02)在 14 天时。

结论

HMGB1 和自噬在 EC 中响应低氧或血清耗竭而发生核释放。HMGB1 和自噬是促进 EC 血管生成行为所必需的,并且可能相互依赖。在体内,HMGB1 可促进缺血损伤后的灌注恢复和 EC 密度增加。这些发现表明自噬和 HMGB1 在 EC 血管生成行为中可能存在潜在的机制联系,并支持固有免疫途径在血管生成中的重要性。

相似文献

2
HMGB1 and TLR4 mediate skeletal muscle recovery in a murine model of hindlimb ischemia.
J Vasc Surg. 2013 Aug;58(2):460-9. doi: 10.1016/j.jvs.2012.11.071. Epub 2013 Feb 12.
3
Chloroquine improves the response to ischemic muscle injury and increases HMGB1 after arterial ligation.
J Vasc Surg. 2018 Mar;67(3):910-921. doi: 10.1016/j.jvs.2017.01.021. Epub 2017 Mar 1.
4
Internalization of HMGB1 (High Mobility Group Box 1) Promotes Angiogenesis in Endothelial Cells.
Arterioscler Thromb Vasc Biol. 2020 Dec;40(12):2922-2940. doi: 10.1161/ATVBAHA.120.315151. Epub 2020 Oct 1.
5
Glycolytic PFKFB3 and Glycogenic UGP2 Axis Regulates Perfusion Recovery in Experimental Hind Limb Ischemia.
Arterioscler Thromb Vasc Biol. 2024 Aug;44(8):1764-1783. doi: 10.1161/ATVBAHA.124.320665. Epub 2024 Jun 27.
7
P2Y2 nucleotide receptor mediates arteriogenesis in a murine model of hind limb ischemia.
J Vasc Surg. 2016 Jan;63(1):216-25. doi: 10.1016/j.jvs.2014.06.112. Epub 2014 Jul 31.
8
Endothelial cell surface vimentin binding peptide induces angiogenesis under hypoxic/ischemic conditions.
Microvasc Res. 2011 Nov;82(3):221-6. doi: 10.1016/j.mvr.2011.07.006. Epub 2011 Jul 22.
9
Deletion of FHL2 gene impaired ischemia-induced blood flow recovery by modulating circulating proangiogenic cells.
Arterioscler Thromb Vasc Biol. 2013 Apr;33(4):709-17. doi: 10.1161/ATVBAHA.112.300318. Epub 2013 Feb 14.
10
Thrombin promotes arteriogenesis and hemodynamic recovery in a rabbit hindlimb ischemia model.
J Vasc Surg. 2009 Apr;49(4):1000-12. doi: 10.1016/j.jvs.2008.11.004. Epub 2009 Feb 14.

引用本文的文献

1
HMGB1 in Septic Muscle Atrophy: Roles and Therapeutic Potential for Muscle Atrophy and Regeneration.
J Cachexia Sarcopenia Muscle. 2025 Feb;16(1):e13711. doi: 10.1002/jcsm.13711.
2
Autophagy: a necessary evil in cancer and inflammation.
3 Biotech. 2024 Mar;14(3):87. doi: 10.1007/s13205-023-03864-w. Epub 2024 Feb 20.
3
Autophagy in muscle regeneration: potential therapies for myopathies.
J Cachexia Sarcopenia Muscle. 2022 Jun;13(3):1673-1685. doi: 10.1002/jcsm.13000. Epub 2022 Apr 17.
5
Role of High Mobility Group Box 1 in Cardiovascular Diseases.
Inflammation. 2022 Oct;45(5):1864-1874. doi: 10.1007/s10753-022-01668-3. Epub 2022 Apr 7.
7
Beclin-1/LC3-II dependent macroautophagy was uninfluenced in ischemia-challenged vascular endothelial cells.
Genes Dis. 2021 Mar 1;9(2):549-561. doi: 10.1016/j.gendis.2021.02.010. eCollection 2022 Mar.
8
Dynamic Multiscale Regulation of Perfusion Recovery in Experimental Peripheral Arterial Disease: A Mechanistic Computational Model.
JACC Basic Transl Sci. 2022 Jan 5;7(1):28-50. doi: 10.1016/j.jacbts.2021.10.014. eCollection 2022 Jan.
10
Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer.
Biomolecules. 2021 Jan 21;11(2):135. doi: 10.3390/biom11020135.

本文引用的文献

1
Endogenous HMGB1 regulates autophagy.
J Cell Biol. 2010 Sep 6;190(5):881-92. doi: 10.1083/jcb.200911078.
3
Fasting-related autophagic response in slow- and fast-twitch skeletal muscle.
Biochem Biophys Res Commun. 2010 Mar 26;394(1):136-40. doi: 10.1016/j.bbrc.2010.02.130. Epub 2010 Feb 23.
4
Autophagy in skeletal muscle.
FEBS Lett. 2010 Apr 2;584(7):1411-6. doi: 10.1016/j.febslet.2010.01.056. Epub 2010 Feb 2.
5
Histidine-rich glycoprotein inhibited high mobility group box 1 in complex with heparin-induced angiogenesis in matrigel plug assay.
Eur J Pharmacol. 2009 Nov 25;623(1-3):89-95. doi: 10.1016/j.ejphar.2009.09.010. Epub 2009 Sep 26.
6
HMGB1 loves company.
J Leukoc Biol. 2009 Sep;86(3):573-6. doi: 10.1189/jlb.1008585. Epub 2009 May 4.
7
Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function.
Am J Respir Cell Mol Biol. 2009 Dec;41(6):651-60. doi: 10.1165/rcmb.2008-0119OC. Epub 2009 Mar 5.
8
Angiostatin anti-angiogenesis requires IL-12: the innate immune system as a key target.
J Transl Med. 2009 Jan 14;7:5. doi: 10.1186/1479-5876-7-5.
9
Regulation of HMGB1 release by autophagy.
Autophagy. 2009 Feb;5(2):247-9. doi: 10.4161/auto.5.2.7552. Epub 2009 Feb 5.
10
Metabolic stress induces the lysosomal degradation of neuropilin-1 but not neuropilin-2.
J Biol Chem. 2008 Oct 17;283(42):28074-80. doi: 10.1074/jbc.M804203200. Epub 2008 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验