Suppr超能文献

受激损耗纳米显微镜揭示了活细胞中胆固醇和细胞骨架调节的脂质相互作用的分子细节。

STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells.

机构信息

Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Biophys J. 2011 Oct 5;101(7):1651-60. doi: 10.1016/j.bpj.2011.09.006.

Abstract

Details about molecular membrane dynamics in living cells, such as lipid-protein interactions, are often hidden from the observer because of the limited spatial resolution of conventional far-field optical microscopy. The superior spatial resolution of stimulated emission depletion (STED) nanoscopy can provide new insights into this process. The application of fluorescence correlation spectroscopy (FCS) in focal spots continuously tuned down to 30 nm in diameter distinguishes between free and anomalous molecular diffusion due to, for example, transient binding of lipids to other membrane constituents, such as lipids and proteins. We compared STED-FCS data recorded on various fluorescent lipid analogs in the plasma membrane of living mammalian cells. Our results demonstrate details about the observed transient formation of molecular complexes. The diffusion characteristics of phosphoglycerolipids without hydroxyl-containing headgroups revealed weak interactions. The strongest interactions were observed with sphingolipid analogs, which showed cholesterol-assisted and cytoskeleton-dependent binding. The hydroxyl-containing headgroup of gangliosides, galactosylceramide, and phosphoinositol assisted binding, but in a much less cholesterol- and cytoskeleton-dependent manner. The observed anomalous diffusion indicates lipid-specific transient hydrogen bonding to other membrane molecules, such as proteins, and points to a distinct connectivity of the various lipids to other membrane constituents. This strong interaction is different from that responsible for forming cholesterol-dependent, liquid-ordered domains in model membranes.

摘要

活细胞中分子膜动力学的详细信息,如脂质-蛋白质相互作用,由于传统远场光学显微镜的空间分辨率有限,通常不为观察者所了解。受激发射损耗(STED)纳米显微镜的优越空间分辨率可以为这个过程提供新的见解。荧光相关光谱(FCS)在焦点的应用连续调谐到 30nm 的直径,由于脂质与其他膜成分(如脂质和蛋白质)的瞬时结合,可区分自由扩散和异常分子扩散。我们比较了在活哺乳动物细胞的质膜中各种荧光脂质类似物上记录的 STED-FCS 数据。我们的结果表明了观察到的分子复合物瞬态形成的详细信息。不含羟基头基的磷酸甘油酯的扩散特性显示出较弱的相互作用。与鞘脂类似物的相互作用最强,它们显示出胆固醇辅助和细胞骨架依赖性结合。神经节苷脂、半乳糖脑苷脂和磷酸肌醇的羟基头基辅助结合,但以一种不那么依赖胆固醇和细胞骨架的方式。观察到的异常扩散表明脂质与其他膜分子(如蛋白质)的特定瞬时氢键相互作用,并指向各种脂质与其他膜成分的不同连接方式。这种强相互作用不同于形成胆固醇依赖性、液体有序域的模型膜中的相互作用。

相似文献

2
FCS in STED microscopy: studying the nanoscale of lipid membrane dynamics.
Methods Enzymol. 2013;519:1-38. doi: 10.1016/B978-0-12-405539-1.00001-4.
5
STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.
Nano Lett. 2015 Sep 9;15(9):5912-8. doi: 10.1021/acs.nanolett.5b02001. Epub 2015 Aug 7.
6
Direct observation of the nanoscale dynamics of membrane lipids in a living cell.
Nature. 2009 Feb 26;457(7233):1159-62. doi: 10.1038/nature07596. Epub 2008 Dec 21.
8
Nanoscale Spatiotemporal Diffusion Modes Measured by Simultaneous Confocal and Stimulated Emission Depletion Nanoscopy Imaging.
Nano Lett. 2018 Jul 11;18(7):4233-4240. doi: 10.1021/acs.nanolett.8b01190. Epub 2018 Jun 19.

引用本文的文献

1
Revised Diffusion Law Permits Quantitative Nanoscale Characterization of Membrane Organization.
Anal Chem. 2025 Jun 10;97(22):11478-11485. doi: 10.1021/acs.analchem.5c00021. Epub 2025 May 29.
2
Sorting of complex sphingolipids within the cellular endomembrane systems.
Front Cell Dev Biol. 2025 Feb 26;12:1490870. doi: 10.3389/fcell.2024.1490870. eCollection 2024.
3
Analysis of immune synapses by τau-STED imaging and 3D-quantitative colocalization of lytic granule markers.
Methods Cell Biol. 2025;193:1-13. doi: 10.1016/bs.mcb.2023.01.018. Epub 2023 Feb 26.
4
Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques?
Membranes (Basel). 2025 Jan 1;15(1):6. doi: 10.3390/membranes15010006.
5
Synthetic Lipid Biology.
Chem Rev. 2025 Feb 26;125(4):2502-2560. doi: 10.1021/acs.chemrev.4c00761. Epub 2025 Jan 13.
6
Super-resolution microscopy to study membrane nanodomains and transport mechanisms in the plasma membrane.
Front Mol Biosci. 2024 Sep 3;11:1455153. doi: 10.3389/fmolb.2024.1455153. eCollection 2024.
7
Cell-cell communication: new insights and clinical implications.
Signal Transduct Target Ther. 2024 Aug 7;9(1):196. doi: 10.1038/s41392-024-01888-z.
9
The LDL receptor is regulated by membrane cholesterol as revealed by fluorescence fluctuation analysis.
Biophys J. 2023 Sep 19;122(18):3783-3797. doi: 10.1016/j.bpj.2023.08.005. Epub 2023 Aug 9.
10
Structural diversity of photoswitchable sphingolipids for optodynamic control of lipid microdomains.
Biophys J. 2023 Jun 6;122(11):2325-2341. doi: 10.1016/j.bpj.2023.02.029. Epub 2023 Mar 3.

本文引用的文献

2
Regulation of human EGF receptor by lipids.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):9044-8. doi: 10.1073/pnas.1105666108. Epub 2011 May 13.
3
Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
Biophys J. 2011 Jan 19;100(2):L8-10. doi: 10.1016/j.bpj.2010.12.3690.
4
Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy.
Annu Rev Phys Chem. 2011;62:417-36. doi: 10.1146/annurev-physchem-032210-103402.
5
Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol.
Biophys J. 2010 Nov 17;99(10):3300-8. doi: 10.1016/j.bpj.2010.09.049.
6
Characterization of horizontal lipid bilayers as a model system to study lipid phase separation.
Biophys J. 2010 Jun 16;98(12):2886-94. doi: 10.1016/j.bpj.2010.03.033.
7
Fast molecular tracking maps nanoscale dynamics of plasma membrane lipids.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6829-34. doi: 10.1073/pnas.0912894107. Epub 2010 Mar 29.
9
Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.
FEBS Lett. 2010 May 3;584(9):1814-23. doi: 10.1016/j.febslet.2010.02.047. Epub 2010 Feb 20.
10
Lipid rafts as a membrane-organizing principle.
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验