Suppr超能文献

利用快速和慢速聚焦氦离子实现纳米分辨率的全细胞成像。

Whole-cell imaging at nanometer resolutions using fast and slow focused helium ions.

机构信息

Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore.

出版信息

Biophys J. 2011 Oct 5;101(7):1788-93. doi: 10.1016/j.bpj.2011.08.028.

Abstract

Observations of the interior structure of cells and subcellular organelles are important steps in unraveling organelle functions. Microscopy using helium ions can play a major role in both surface and subcellular imaging because it can provide subnanometer resolutions at the cell surface for slow helium ions, and fast helium ions can penetrate cells without a significant loss of resolution. Slow (e.g., 10-50 keV) helium ion beams can now be focused to subnanometer dimensions (∼0.25 nm), and keV helium ion microscopy can be used to image the surfaces of cells at high resolutions. Because of the ease of neutralizing the sample charge using a flood electron beam, surface charging effects are minimal and therefore cell surfaces can be imaged without the need for a conducting metallic coating. Fast (MeV) helium ions maintain a straight path as they pass through a cell. Along the ion trajectory, the helium ion undergoes multiple electron collisions, and for each collision a small amount of energy is lost to the scattered electron. By measuring the total energy loss of each MeV helium ion as it passes through the cell, we can construct an energy-loss image that is representative of the mass distribution of the cell. This work paves the way to use ions for whole-cell investigations at nanometer resolutions through structural, elemental (via nuclear elastic backscattering), and fluorescence (via ion induced fluorescence) imaging.

摘要

观察细胞和亚细胞细胞器的内部结构是揭示细胞器功能的重要步骤。氦离子显微镜在表面和亚细胞成像中都可以发挥重要作用,因为它可以为表面的慢氦离子提供亚纳米分辨率,而快氦离子可以穿透细胞而不会显著损失分辨率。现在,慢(例如 10-50 keV)氦离子束可以聚焦到亚纳米尺寸(约 0.25nm),并且可以使用 keV 氦离子显微镜以高分辨率对细胞表面进行成像。由于使用漫散射电子束很容易中和样品电荷,因此表面充电效应最小,因此无需进行导电金属涂层即可对细胞表面进行成像。快速(MeV)氦离子在穿过细胞时保持直线运动。沿着离子轨迹,氦离子经历多次电子碰撞,每次碰撞都会向散射电子损失少量能量。通过测量每个 MeV 氦离子穿过细胞时的总能量损失,我们可以构建一个能量损失图像,该图像代表细胞的质量分布。这项工作为通过结构、元素(通过核弹性背散射)和荧光(通过离子诱导荧光)成像以纳米分辨率对整个细胞进行研究铺平了道路。

相似文献

10
The interaction of a nanoscale coherent helium-ion probe with a crystal.纳米级相干氦离子探针与晶体的相互作用。
Ultramicroscopy. 2013 Nov;134:18-22. doi: 10.1016/j.ultramic.2013.06.019. Epub 2013 Jul 3.

引用本文的文献

3
Bio-imaging with the helium-ion microscope: A review.氦离子显微镜的生物成像:综述
Beilstein J Nanotechnol. 2021 Jan 4;12:1-23. doi: 10.3762/bjnano.12.1. eCollection 2021.
6
Subwavelength imaging through ion-beam-induced upconversion.
Nat Commun. 2015 Nov 12;6:8832. doi: 10.1038/ncomms9832.

本文引用的文献

2
Soft X-ray diffraction microscopy of a frozen hydrated yeast cell.冷冻水合酵母细胞的软 X 射线衍射显微镜观察。
Phys Rev Lett. 2009 Nov 6;103(19):198101. doi: 10.1103/PhysRevLett.103.198101. Epub 2009 Nov 5.
4
Visualizing cells at the nanoscale.在纳米尺度下观察细胞。
Trends Biochem Sci. 2009 Feb;34(2):60-70. doi: 10.1016/j.tibs.2008.10.011. Epub 2008 Dec 26.
10
Imaging intracellular fluorescent proteins at nanometer resolution.以纳米分辨率成像细胞内荧光蛋白。
Science. 2006 Sep 15;313(5793):1642-5. doi: 10.1126/science.1127344. Epub 2006 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验