Suppr超能文献

组合标志物可预测轻度认知障碍向阿尔茨海默病的转化——细胞因子和 MRI 测量联合预测疾病进展。

Combinatorial markers of mild cognitive impairment conversion to Alzheimer's disease--cytokines and MRI measures together predict disease progression.

机构信息

King's College London, Institute of Psychiatry and National Institute of Health Research (NIHR) Biomedical Research Centre for Mental Health, London, UK.

出版信息

J Alzheimers Dis. 2011;26 Suppl 3:395-405. doi: 10.3233/JAD-2011-0044.

Abstract

Progression of people presenting with Mild Cognitive Impairment (MCI) to dementia is not certain and it is not possible for clinicians to predict which people are most likely to convert. The inability of clinicians to predict progression limits the use of MCI as a syndrome for treatment in prevention trials and, as more people present with this syndrome in memory clinics, and as earlier diagnosis is a major goal of health services, this presents an important clinical problem. Some data suggest that CSF biomarkers and functional imaging using PET might act as markers to facilitate prediction of conversion. However, both techniques are costly and not universally available. The objective of our study was to investigate the potential added benefit of combining biomarkers that are more easily obtained in routine clinical practice to predict conversion from MCI to Alzheimer's disease. To explore this we combined automated regional analysis of structural MRI with analysis of plasma cytokines and chemokines and compared these to measures of APOE genotype and clinical assessment to assess which best predict progression. In a total of 205 people with MCI, 77 of whom subsequently converted to Alzheimer's disease, we find biochemical markers of inflammation to be better predictors of conversion than APOE genotype or clinical measures (Area under the curve (AUC) 0.65, 0.62, 0.59 respectively). In a subset of subjects who also had MRI scans the combination of serum markers of inflammation and MRI automated imaging analysis provided the best predictor of conversion (AUC 0.78). These results show that the combination of imaging and cytokine biomarkers provides an improvement in prediction of MCI to AD conversion compared to either datatype alone, APOE genotype or clinical data and an accuracy of prediction that would have clinical utility.

摘要

从轻度认知障碍(MCI)进展为痴呆的患者并不确定,临床医生也无法预测哪些患者最有可能转化。临床医生无法预测进展限制了 MCI 作为治疗预防试验中的综合征的使用,随着更多的人在记忆诊所出现这种综合征,并且早期诊断是卫生服务的主要目标,这就提出了一个重要的临床问题。一些数据表明,CSF 生物标志物和使用 PET 的功能成像可能作为促进转化预测的标志物。然而,这两种技术都很昂贵,并且不是普遍可用的。我们的研究目的是研究将在常规临床实践中更容易获得的生物标志物结合起来预测从 MCI 向阿尔茨海默病转化的潜在附加益处。为了探索这一点,我们将结构 MRI 的自动区域分析与血浆细胞因子和趋化因子的分析相结合,并将这些与 APOE 基因型和临床评估的测量结果进行比较,以评估哪种方法最能预测进展。在总共 205 名 MCI 患者中,有 77 名随后转化为阿尔茨海默病,我们发现炎症的生化标志物比 APOE 基因型或临床指标更好地预测转化(曲线下面积(AUC)分别为 0.65、0.62、0.59)。在一组也进行了 MRI 扫描的受试者中,炎症的血清标志物与 MRI 自动成像分析的结合提供了最佳的转化预测(AUC 0.78)。这些结果表明,与任何单个数据类型、APOE 基因型或临床数据相比,影像学和细胞因子生物标志物的组合提供了对 MCI 向 AD 转化的预测改善,并且预测的准确性具有临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验