Interdepartmental Program in Biomolecular Science & Engineering, University of California, Santa Barbara, California 93106-9510.
Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106-9510.
J Biol Chem. 2011 Dec 2;286(48):41479-41488. doi: 10.1074/jbc.M111.284687. Epub 2011 Oct 6.
DNMT3A is one of two human de novo DNA methyltransferases essential for regulating gene expression through cellular development and differentiation. Here we describe the consequences of single amino acid mutations, including those implicated in the development of acute myeloid leukemia (AML) and myelodysplastic syndromes, at the DNMT3A·DNMT3A homotetramer and DNMT3A·DNMT3L heterotetramer interfaces. A model for the DNMT3A homotetramer was developed via computational interface scanning and tested using light scattering and electrophoretic mobility shift assays. Distinct oligomeric states were functionally characterized using fluorescence anisotropy and steady-state kinetics. Replacement of residues that result in DNMT3A dimers, including those identified in AML patients, show minor changes in methylation activity but lose the capacity for processive catalysis on multisite DNA substrates, unlike the highly processive wild-type enzyme. Our results are consistent with the bimodal distribution of DNA methylation in vivo and the loss of clustered methylation in AML patients. Tetramerization with the known interacting partner DNMT3L rescues processive catalysis, demonstrating that protein binding at the DNMT3A tetramer interface can modulate methylation patterning. Our results provide a structural mechanism for the regulation of DNMT3A activity and epigenetic imprinting.
DNMT3A 是两种人类从头 DNA 甲基转移酶之一,对于通过细胞发育和分化调节基因表达至关重要。在这里,我们描述了单个氨基酸突变的后果,包括那些与急性髓系白血病 (AML) 和骨髓增生异常综合征发展相关的突变,这些突变发生在 DNMT3A·DNMT3A 同源四聚体和 DNMT3A·DNMT3L 异源四聚体界面。通过计算界面扫描开发了 DNMT3A 同源四聚体模型,并通过光散射和电泳迁移率变动分析进行了测试。使用荧光各向异性和稳态动力学功能表征了不同的寡聚状态。导致 DNMT3A 二聚体的残基(包括在 AML 患者中鉴定的残基)的取代显示出甲基化活性的微小变化,但失去了在多位点 DNA 底物上进行连续催化的能力,与高度连续的野生型酶不同。我们的结果与体内 DNA 甲基化的双峰分布以及 AML 患者中簇状甲基化的丧失一致。与已知的相互作用伴侣 DNMT3L 的四聚化挽救了连续催化,表明在 DNMT3A 四聚体界面的蛋白质结合可以调节甲基化模式。我们的结果为 DNMT3A 活性和表观遗传印记的调节提供了结构机制。