Suppr超能文献

细菌氨基酸化学感受受体 Tsr 和 Tar 中差异排列的共同配体结合残基决定配体特异性。

Ligand specificity determined by differentially arranged common ligand-binding residues in bacterial amino acid chemoreceptors Tsr and Tar.

机构信息

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602; Department of Frontier Bioscience, Hosei University, Koganei 184-8584; Research Center for Micro-Nano Technology, Hosei University, Koganei 184-8584.

Graduate School of Frontier Bioscience, Osaka University, Suita 565-0871; Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043.

出版信息

J Biol Chem. 2011 Dec 9;286(49):42200-42210. doi: 10.1074/jbc.M111.221887. Epub 2011 Oct 6.

Abstract

Escherichia coli has closely related amino acid chemoreceptors with distinct ligand specificity, Tar for l-aspartate and Tsr for l-serine. Crystallography of the ligand-binding domain of Tar identified the residues interacting with aspartate, most of which are conserved in Tsr. However, swapping of the nonconserved residues between Tsr and Tar did not change ligand specificity. Analyses with chimeric receptors led us to hypothesize that distinct three-dimensional arrangements of the conserved ligand-binding residues are responsible for ligand specificity. To test this hypothesis, the structures of the apo- and serine-binding forms of the ligand-binding domain of Tsr were determined at 1.95 and 2.5 Å resolutions, respectively. Some of the Tsr residues are arranged differently from the corresponding aspartate-binding residues of Tar to form a high affinity serine-binding pocket. The ligand-binding pocket of Tsr was surrounded by negatively charged residues, which presumably exclude negatively charged aspartate molecules. We propose that all these Tsr- and Tar-specific features contribute to specific recognition of serine and aspartate with the arrangement of the side chain of residue 68 (Asn in Tsr and Ser in Tar) being the most critical.

摘要

大肠杆菌具有密切相关的氨基酸化学感受器,其配体特异性不同,Tar 识别 l-天冬氨酸,Tsr 识别 l-丝氨酸。Tar 配体结合域的晶体学研究确定了与天冬氨酸相互作用的残基,其中大多数残基在 Tsr 中保守。然而,在 Tsr 和 Tar 之间交换非保守残基并没有改变配体特异性。通过嵌合受体的分析,我们假设保守的配体结合残基的不同三维排列是决定配体特异性的原因。为了验证这一假设,分别以 1.95 和 2.5 Å 的分辨率测定了 Tsr 配体结合域的 apo 和丝氨酸结合形式的结构。Tsr 的一些残基的排列方式与 Tar 的相应天冬氨酸结合残基不同,形成了一个高亲和力的丝氨酸结合口袋。Tsr 的配体结合口袋被带负电荷的残基包围,这些残基可能会排斥带负电荷的天冬氨酸分子。我们提出,所有这些 Tsr 和 Tar 特异性特征有助于对丝氨酸和天冬氨酸的特异性识别,其中残基 68(Tsr 中的天冬酰胺和 Tar 中的丝氨酸)侧链的排列是最关键的。

相似文献

2
Conformational suppression of inter-receptor signaling defects.
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9292-7. doi: 10.1073/pnas.0602135103. Epub 2006 Jun 2.
3
Collaborative signaling by mixed chemoreceptor teams in Escherichia coli.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):7060-5. doi: 10.1073/pnas.092071899. Epub 2002 Apr 30.
5
Mutational analysis of N381, a key trimer contact residue in Tsr, the Escherichia coli serine chemoreceptor.
J Bacteriol. 2011 Dec;193(23):6452-60. doi: 10.1128/JB.05887-11. Epub 2011 Sep 30.
7
Cooperative signaling among bacterial chemoreceptors.
Biochemistry. 2005 Nov 1;44(43):14298-307. doi: 10.1021/bi050567y.
8
Phenol sensing by Escherichia coli chemoreceptors: a nonclassical mechanism.
J Bacteriol. 2011 Dec;193(23):6597-604. doi: 10.1128/JB.05987-11. Epub 2011 Sep 30.
9
Role of threonine residue 154 in ligand recognition of the tar chemoreceptor in Escherichia coli.
J Bacteriol. 1990 Jan;172(1):377-82. doi: 10.1128/jb.172.1.377-382.1990.
10
Ligand-specific activation of Escherichia coli chemoreceptor transmethylation.
J Bacteriol. 2004 Nov;186(22):7556-63. doi: 10.1128/JB.186.22.7556-7563.2004.

引用本文的文献

1
Thermal shift assay to identify ligands for bacterial sensor proteins.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf033.
2
Insights into Chemoreceptor MCP2201-Sensing D-Malate.
Int J Mol Sci. 2025 May 20;26(10):4902. doi: 10.3390/ijms26104902.
3
Chemotaxis and Related Signaling Systems in .
Biomolecules. 2025 Mar 18;15(3):434. doi: 10.3390/biom15030434.
4
Bacterial amino acid chemotaxis: a widespread strategy with multiple physiological and ecological roles.
J Bacteriol. 2024 Oct 24;206(10):e0030024. doi: 10.1128/jb.00300-24. Epub 2024 Sep 27.
5
Potassium-mediated bacterial chemotactic response.
Elife. 2024 Jun 4;12:RP91452. doi: 10.7554/eLife.91452.
6
Bacterial vampirism mediated through taxis to serum.
Elife. 2024 May 31;12:RP93178. doi: 10.7554/eLife.93178.
7
D-amino acids signal a stress-dependent run-away response in Vibrio cholerae.
Nat Microbiol. 2023 Aug;8(8):1549-1560. doi: 10.1038/s41564-023-01419-6. Epub 2023 Jun 26.
8
Discovery of a New Chemoeffector for Chemoreceptor Tsr and Identification of a Molecular Mechanism of Repellent Sensing.
ACS Bio Med Chem Au. 2022 Mar 18;2(4):386-394. doi: 10.1021/acsbiomedchemau.1c00055. eCollection 2022 Aug 17.
9
Three unrelated chemoreceptors provide Pectobacterium atrosepticum with a broad-spectrum amino acid sensing capability.
Microb Biotechnol. 2023 Jul;16(7):1548-1560. doi: 10.1111/1751-7915.14255. Epub 2023 Mar 25.
10
The pH Robustness of Bacterial Sensing.
mBio. 2022 Oct 26;13(5):e0165022. doi: 10.1128/mbio.01650-22. Epub 2022 Sep 26.

本文引用的文献

1
Signal transduction in bacterial chemotaxis.
Bioessays. 2006 Jan;28(1):9-22. doi: 10.1002/bies.20343.
2
Making sense of it all: bacterial chemotaxis.
Nat Rev Mol Cell Biol. 2004 Dec;5(12):1024-37. doi: 10.1038/nrm1524.
3
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
4
The three-dimensional structure of the aspartate receptor from Escherichia coli.
Acta Crystallogr D Biol Crystallogr. 1995 Mar 1;51(Pt 2):145-54. doi: 10.1107/S0907444994010498.
5
Diversity in chemotaxis mechanisms among the bacteria and archaea.
Microbiol Mol Biol Rev. 2004 Jun;68(2):301-19. doi: 10.1128/MMBR.68.2.301-319.2004.
6
Transmembrane signaling in bacterial chemoreceptors.
Trends Biochem Sci. 2001 Apr;26(4):257-65. doi: 10.1016/s0968-0004(00)01770-9.
7
Automated MAD and MIR structure solution.
Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):849-61. doi: 10.1107/s0907444999000839.
8
Crystallography & NMR system: A new software suite for macromolecular structure determination.
Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21. doi: 10.1107/s0907444998003254.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验