Suppr超能文献

根瘤菌分泌钴胺素对共培养物中甲烷营养生长的刺激作用。

Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia.

机构信息

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.

出版信息

Appl Environ Microbiol. 2011 Dec;77(24):8509-15. doi: 10.1128/AEM.05834-11. Epub 2011 Oct 7.

Abstract

Methanotrophs play a key role in the global carbon cycle, in which they affect methane emissions and help to sustain diverse microbial communities through the conversion of methane to organic compounds. To investigate the microbial interactions that cause positive effects on methanotrophs, cocultures were constructed using Methylovulum miyakonense HT12 and each of nine nonmethanotrophic bacteria, which were isolated from a methane-utilizing microbial consortium culture established from forest soil. Three rhizobial strains were found to strongly stimulate the growth and methane oxidation of M. miyakonense HT12 in cocultures. We purified the stimulating factor produced by Rhizobium sp. Rb122 and identified it as cobalamin. Growth stimulation by cobalamin was also observed for three other gammaproteobacterial methanotrophs. These results suggest that microbial interactions through cobalamin play an important role in methane oxidation in various ecosystems.

摘要

产甲烷菌在全球碳循环中发挥着关键作用,它们通过将甲烷转化为有机化合物来影响甲烷排放,并有助于维持多样化的微生物群落。为了研究对产甲烷菌产生积极影响的微生物相互作用,使用从森林土壤中建立的甲烷利用微生物共生体培养物中分离得到的九种非产甲烷菌中的每一种与 Methylovulum miyakonense HT12 构建了共培养物。发现三种根瘤菌菌株在共培养物中强烈刺激 M. miyakonense HT12 的生长和甲烷氧化。我们纯化了 Rhizobium sp. Rb122 产生的刺激因子,并将其鉴定为钴胺素。其他三种γ变形菌产甲烷菌也观察到了钴胺素的生长刺激作用。这些结果表明,通过钴胺素的微生物相互作用在各种生态系统中的甲烷氧化中起着重要作用。

相似文献

1
Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia.
Appl Environ Microbiol. 2011 Dec;77(24):8509-15. doi: 10.1128/AEM.05834-11. Epub 2011 Oct 7.
2
Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil.
Int J Syst Evol Microbiol. 2011 Apr;61(Pt 4):810-815. doi: 10.1099/ijs.0.019604-0. Epub 2010 Apr 30.
3
Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil.
ISME J. 2008 Jan;2(1):92-104. doi: 10.1038/ismej.2007.66. Epub 2007 Nov 29.
4
Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog.
Appl Environ Microbiol. 2016 Apr 4;82(8):2363-2371. doi: 10.1128/AEM.03640-15. Print 2016 Apr.
7
Community Structure of Active Aerobic Methanotrophs in Red Mangrove (Kandelia obovata) Soils Under Different Frequency of Tides.
Microb Ecol. 2018 Apr;75(3):761-770. doi: 10.1007/s00248-017-1080-1. Epub 2017 Oct 11.
8
Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria.
Appl Environ Microbiol. 2012 Dec;78(24):8657-65. doi: 10.1128/AEM.02102-12. Epub 2012 Oct 5.
9
Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.
Science. 1998 Oct 9;282(5387):281-4. doi: 10.1126/science.282.5387.281.
10
Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants.
Folia Microbiol (Praha). 2017 Sep;62(5):381-391. doi: 10.1007/s12223-017-0508-9. Epub 2017 Mar 9.

引用本文的文献

1
The Corrinoid Model for Dissecting Microbial Community Interactions Across Scales.
Annu Rev Microbiol. 2025 Jun 27. doi: 10.1146/annurev-micro-051024-044734.
2
Stable microbial community promotes aerobic methanotrophy in a large river-reservoir system.
mSystems. 2025 Jun 25:e0053025. doi: 10.1128/msystems.00530-25.
4
Reduction of enteric methane emission using methanotroph-based probiotics in Hanwoo steers.
Anim Microbiome. 2025 Feb 22;7(1):19. doi: 10.1186/s42523-025-00385-0.
5
Skin-associated shares cobamides.
mSphere. 2025 Jan 28;10(1):e0060624. doi: 10.1128/msphere.00606-24. Epub 2024 Dec 18.
9
Transcriptome profiling of Paraburkholderia aromaticivorans AR20-38 during ferulic acid bioconversion.
AMB Express. 2022 Nov 26;12(1):148. doi: 10.1186/s13568-022-01487-7.
10
Prospecting the significance of methane-utilizing bacteria in agriculture.
World J Microbiol Biotechnol. 2022 Aug 4;38(10):176. doi: 10.1007/s11274-022-03331-3.

本文引用的文献

1
Cross-feeding of methane carbon among bacteria on rice roots revealed by DNA-stable isotope probing.
Environ Microbiol Rep. 2009 Oct;1(5):355-61. doi: 10.1111/j.1758-2229.2009.00045.x. Epub 2009 Jul 14.
2
Methanotrophic symbioses in marine invertebrates.
Environ Microbiol Rep. 2009 Oct;1(5):319-35. doi: 10.1111/j.1758-2229.2009.00081.x.
3
Modularity of methylotrophy, revisited.
Environ Microbiol. 2011 Oct;13(10):2603-22. doi: 10.1111/j.1462-2920.2011.02464.x. Epub 2011 Mar 28.
4
Facultative and obligate methanotrophs how to identify and differentiate them.
Methods Enzymol. 2011;495:31-44. doi: 10.1016/B978-0-12-386905-0.00003-6.
5
Biotechnological potential of the ethylmalonyl-CoA pathway.
Appl Microbiol Biotechnol. 2011 Jan;89(1):17-25. doi: 10.1007/s00253-010-2873-z. Epub 2010 Sep 30.
6
Soluble and particulate methane monooxygenase gene clusters of the type I methanotroph Methylovulum miyakonense HT12.
FEMS Microbiol Lett. 2010 Nov;312(1):71-6. doi: 10.1111/j.1574-6968.2010.02101.x. Epub 2010 Sep 15.
8
Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil.
Int J Syst Evol Microbiol. 2011 Apr;61(Pt 4):810-815. doi: 10.1099/ijs.0.019604-0. Epub 2010 Apr 30.
9
Methanotrophs and copper.
FEMS Microbiol Rev. 2010 Jul;34(4):496-531. doi: 10.1111/j.1574-6976.2010.00212.x. Epub 2010 Jan 30.
10
A methane-driven microbial food web in a wetland rice soil.
Environ Microbiol. 2007 Dec;9(12):3025-34. doi: 10.1111/j.1462-2920.2007.01414.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验