Nolen Tracy L, Hudgens Michael G
RTI International, Research Triangle Park, NC 27709.
J Am Stat Assoc. 2011 Jun;106(494):581-593. doi: 10.1198/jasa.2011.tm10356.
In randomized studies, treatment comparisons conditional on intermediate post-randomization outcomes using standard analytic methods do not have a causal interpretation. An alternate approach entails treatment comparisons within principal strata defined by the potential outcomes for the intermediate outcome that would be observed under each treatment assignment. In this paper, we develop methods for randomization-based inference within principal strata. The proposed methods are compared with existing large-sample methods as well as traditional intent-to-treat approaches. This research is motivated by HIV prevention studies where few infections are expected and inference is desired within the always-infected principal stratum, i.e., all individuals who would become infected regardless of randomization assignment.
在随机研究中,使用标准分析方法对随机化后中间结果进行条件处理比较并不具有因果解释。另一种方法是在由每种治疗分配下中间结果的潜在结果所定义的主要分层内进行治疗比较。在本文中,我们开发了在主要分层内基于随机化的推断方法。将所提出的方法与现有的大样本方法以及传统的意向性治疗方法进行了比较。这项研究的动机来自于HIV预防研究,在这类研究中预计感染人数很少,并且希望在总是感染的主要分层内进行推断,即所有无论随机化分配如何都会被感染的个体。