Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
J Am Chem Soc. 2011 Mar 23;133(11):3943-53. doi: 10.1021/ja108650x. Epub 2011 Mar 1.
We present a family of homonuclear (13)C-(13)C magic angle spinning spin diffusion experiments, based on R2(n)(v) (n = 1 and 2, v = 1 and 2) symmetry sequences. These experiments are well suited for (13)C-(13)C correlation spectroscopy in biological and organic systems and are especially advantageous at very fast MAS conditions, where conventional PDSD and DARR experiments fail. At very fast MAS frequencies the R2(1)(1), R2(2)(1), and R2(2)(2) sequences result in excellent quality correlation spectra both in model compounds and in proteins. Under these conditions, individual R2(n)(v) display different polarization transfer efficiency dependencies on isotropic chemical shift differences: R2(2)(1) recouples efficiently both small and large chemical shift differences (in proteins these correspond to aliphatic-to-aliphatic and carbonyl-to-aliphatic correlations, respectively), while R2(1)(1) and R2(2)(2) exhibit the maximum recoupling efficiency for the aliphatic-to-aliphatic or carbonyl-to-aliphatic correlations, respectively. At moderate MAS frequencies (10-20 kHz), all R2(n)(v) sequences introduced in this work display similar transfer efficiencies, and their performance is very similar to that of PDSD and DARR. Polarization transfer dynamics and chemical shift dependencies of these R2-driven spin diffusion (RDSD) schemes are experimentally evaluated and investigated by numerical simulations for [U-(13)C,(15)N]-alanine and the [U-(13)C,(15)N] N-formyl-Met-Leu-Phe (MLF) tripeptide. Further applications of this approach are illustrated for several proteins: spherical assemblies of HIV-1 U-(13)C,(15)N CA protein, U-(13)C,(15)N-enriched dynein light chain DLC8, and sparsely (13)C/uniformly (15)N enriched CAP-Gly domain of dynactin. Due to the excellent performance and ease of implementation, the presented R2(n)(v) symmetry sequences are expected to be of wide applicability in studies of proteins and protein assemblies as well as other organic solids by MAS NMR spectroscopy.
我们提出了一组同核(13)C-(13)C 魔角旋转自旋扩散实验,基于 R2(n)(v)(n=1 和 2,v=1 和 2)对称序列。这些实验非常适合生物和有机系统中的(13)C-(13)C 相关光谱学研究,特别是在非常快的 MAS 条件下,传统的 PDSD 和 DARR 实验会失败。在非常快的 MAS 频率下,R2(1)(1)、R2(2)(1)和 R2(2)(2)序列在模型化合物和蛋白质中都产生了极好的质量相关光谱。在这些条件下,单个 R2(n)(v)显示出不同的极化转移效率对各向同性化学位移差异的依赖性:R2(2)(1)有效地重新耦合小的和大的化学位移差异(在蛋白质中,这些分别对应于脂肪族到脂肪族和羰基到脂肪族的相关),而 R2(1)(1)和 R2(2)(2)分别显示出脂肪族到脂肪族或羰基到脂肪族相关的最大重新耦合效率。在中等 MAS 频率(10-20 kHz)下,本工作中引入的所有 R2(n)(v)序列都显示出相似的转移效率,其性能与 PDSD 和 DARR 非常相似。通过数值模拟实验评估和研究了这些 R2 驱动的自旋扩散(RDSD)方案的极化转移动力学和化学位移依赖性,用于 [U-(13)C,(15)N]-丙氨酸和 [U-(13)C,(15)N]N-甲酰基-Met-Leu-Phe(MLF)三肽。该方法的进一步应用通过几个蛋白质进行了说明:HIV-1 U-(13)C,(15)N CA 蛋白的球形组装体、U-(13)C,(15)N 富集的动力蛋白轻链 DLC8 以及稀疏(13)C/均匀(15)N 富集的动力蛋白激活蛋白-Gly 结构域 dynactin。由于其出色的性能和易于实现,所提出的 R2(n)(v)对称序列有望在 MAS NMR 光谱学研究蛋白质和蛋白质组装以及其他有机固体方面得到广泛应用。