Suppr超能文献

国家常规卫生信息系统病例标识过程错误的系统因素:菲律宾修正后的现场卫生服务信息系统案例研究。

Systemic factors of errors in the case identification process of the national routine health information system: a case study of Modified Field Health Services Information System in the Philippines.

机构信息

Division of International Health (Quality and Health Systems), Graduate School of Medicine, Tohoku University, Sendai, Japan.

出版信息

BMC Health Serv Res. 2011 Oct 14;11:271. doi: 10.1186/1472-6963-11-271.

Abstract

BACKGROUND

The quality of data in national health information systems has been questionable in most developing countries. However, the mechanisms of errors in the case identification process are not fully understood. This study aimed to investigate the mechanisms of errors in the case identification process in the existing routine health information system (RHIS) in the Philippines by measuring the risk of committing errors for health program indicators used in the Field Health Services Information System (FHSIS 1996), and characterizing those indicators accordingly.

METHODS

A structured questionnaire on the definitions of 12 selected indicators in the FHSIS was administered to 132 health workers in 14 selected municipalities in the province of Palawan. A proportion of correct answers (difficulty index) and a disparity of two proportions of correct answers between higher and lower scored groups (discrimination index) were calculated, and the patterns of wrong answers for each of the 12 items were abstracted from 113 valid responses.

RESULTS

None of 12 items reached a difficulty index of 1.00. The average difficulty index of 12 items was 0.266 and the discrimination index that showed a significant difference was 0.216 and above. Compared with these two cut-offs, six items showed non-discrimination against lower difficulty indices of 0.035 (4/113) to 0.195 (22/113), two items showed a positive discrimination against lower difficulty indices of 0.142 (16/113) and 0.248 (28/113), and four items showed a positive discrimination against higher difficulty indices of 0.469 (53/113) to 0.673 (76/113).

CONCLUSIONS

The results suggest three characteristics of definitions of indicators such as those that are (1) unsupported by the current conditions in the health system, i.e., (a) data are required from a facility that cannot directly generate the data and, (b) definitions of indicators are not consistent with its corresponding program; (2) incomplete or ambiguous, which allow several interpretations; and (3) complete yet easily misunderstood by health workers.Taking systemic factors into account, the case identification step needs to be reviewed and designed to generate intended data in health information systems.

摘要

背景

在大多数发展中国家,国家卫生信息系统的数据质量一直存在问题。然而,病例识别过程中错误的发生机制尚未完全了解。本研究旨在通过测量用于现场卫生服务信息系统(FHSIS 1996)的卫生规划指标的错误风险,来调查菲律宾现有常规卫生信息系统(RHIS)中病例识别过程中的错误机制,并相应地对这些指标进行特征描述。

方法

对来自 14 个选定的巴兰万安省直辖市的 132 名卫生工作者进行了关于 FHSIS 中 12 个选定指标定义的结构化问卷调查。计算了正确答案的比例(难度指数)和高低分组之间正确答案比例差异(鉴别指数),并从 113 个有效回答中提取了每个 12 个项目的错误答案模式。

结果

12 个项目中没有一个难度指数达到 1.00。12 个项目的平均难度指数为 0.266,具有显著差异的鉴别指数为 0.216 及以上。与这两个截止值相比,6 个项目对低难度指数(0.035[113 个中的 4 个]至 0.195[113 个中的 22 个])没有歧视,2 个项目对低难度指数(0.142[113 个中的 16 个]和 0.248[113 个中的 28 个])具有正鉴别性,4 个项目对高难度指数(0.469[113 个中的 53 个]至 0.673[113 个中的 76 个])具有正鉴别性。

结论

结果表明,指标定义具有以下三个特征:(1)不受卫生系统当前条件支持,即:数据来自无法直接生成数据的设施,并且指标的定义与相应的规划不一致;(2)不完整或模糊,允许有几种解释;(3)完整但容易被卫生工作者误解。考虑到系统性因素,需要审查和设计病例识别步骤,以便在卫生信息系统中生成预期的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1578/3377923/5f585beffa3c/1472-6963-11-271-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验