Suppr超能文献

用临床可用的 MRI 和 CSF 生物标志物预测 MCI 结局。

Predicting MCI outcome with clinically available MRI and CSF biomarkers.

机构信息

Department of Radiology, University of California, San Diego, La Jolla, CA 92093-0841, USA.

出版信息

Neurology. 2011 Oct 25;77(17):1619-28. doi: 10.1212/WNL.0b013e3182343314. Epub 2011 Oct 12.

Abstract

OBJECTIVE

To determine the ability of clinically available volumetric MRI (vMRI) and CSF biomarkers, alone or in combination with a quantitative learning measure, to predict conversion to Alzheimer disease (AD) in patients with mild cognitive impairment (MCI).

METHODS

We stratified 192 MCI participants into positive and negative risk groups on the basis of 1) degree of learning impairment on the Rey Auditory Verbal Learning Test; 2) medial temporal atrophy, quantified from Food and Drug Administration-approved software for automated vMRI analysis; and 3) CSF biomarker levels(.) We also stratified participants based on combinations of risk factors. We computed Cox proportional hazards models, controlling for age, to assess 3-year risk of converting to AD as a function of risk group and used Kaplan-Meier analyses to determine median survival times.

RESULTS

When risk factors were examined separately, individuals testing positive showed significantly higher risk of converting to AD than individuals testing negative (hazard ratios [HR] 1.8-4.1). The joint presence of any 2 risk factors substantially increased risk, with the combination of greater learning impairment and increased atrophy associated with highest risk (HR 29.0): 85% of patients with both risk factors converted to AD within 3 years, vs 5% of those with neither. The presence of medial temporal atrophy was associated with shortest median dementia-free survival (15 months).

CONCLUSIONS

Incorporating quantitative assessment of learning ability along with vMRI or CSF biomarkers in the clinical workup of MCI can provide critical information on risk of imminent conversion to AD.

摘要

目的

确定临床可用的容积 MRI(vMRI)和 CSF 生物标志物,单独或与定量学习指标相结合,预测轻度认知障碍(MCI)患者向阿尔茨海默病(AD)转化的能力。

方法

我们根据以下标准将 192 名 MCI 参与者分为阳性和阴性风险组:1)Rey 听觉言语学习测试中的学习障碍程度;2)基于经食品和药物管理局批准的自动 vMRI 分析软件量化的内侧颞叶萎缩;3)CSF 生物标志物水平。我们还根据危险因素的组合对参与者进行分层。我们计算了 Cox 比例风险模型,控制年龄因素,以评估 3 年内转化为 AD 的风险作为风险组的函数,并使用 Kaplan-Meier 分析确定中位生存时间。

结果

当分别检查危险因素时,检测阳性的个体比检测阴性的个体表现出明显更高的 AD 转化风险(危险比 [HR] 1.8-4.1)。任意两种危险因素的共同存在大大增加了风险,学习障碍加重和萎缩增加的组合与最高风险相关(HR 29.0):有两种危险因素的患者中有 85%在 3 年内转化为 AD,而没有两种危险因素的患者中只有 5%转化为 AD。内侧颞叶萎缩的存在与最短的痴呆无进展生存中位数相关(15 个月)。

结论

在 MCI 的临床评估中,结合学习能力的定量评估以及 vMRI 或 CSF 生物标志物,可以提供关于即将向 AD 转化的风险的关键信息。

相似文献

1

引用本文的文献

8
Machine Learning for the Preliminary Diagnosis of Dementia.用于痴呆症初步诊断的机器学习
Sci Program. 2020;2020:5629090. doi: 10.1155/2020/5629090. Epub 2020 Mar 7.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验