Graduate Group in Biochemistry & Molecular Biophysics and Department of Biochemistry & Biophysics, 905 Stellar-Chance Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, United States.
J Am Chem Soc. 2011 Nov 9;133(44):17786-95. doi: 10.1021/ja206876h. Epub 2011 Oct 19.
This report describes a model protein specifically tailored to electrochemically study the reduction potential of protein tyrosine radicals as a function of pH. The model system is based on the 67-residue α(3)Y three-helix bundle. α(3)Y contains a single buried tyrosine at position 32 and displays structural properties inherent to a protein. The present report presents differential pulse voltammograms obtained from α(3)Y at both acidic (pH 5.6) and alkaline (pH 8.3) conditions. The observed Faradaic response is uniquely associated with Y32, as shown by site-directed mutagenesis. This is the first time voltammetry is successfully applied to detect a redox-active tyrosine residing in a structured protein environment. Tyrosine is a proton-coupled electron-transfer cofactor making voltammetry-based pH titrations a central experimental approach. A second set of experiments was performed to demonstrate that pH-dependent studies can be conducted on the redox-active tyrosine without introducing large-scale structural changes in the protein scaffold. α(3)Y was re-engineered with the specific aim to place the imidazole group of a histidine close to the Y32 phenol ring. α(3)Y-K29H and α(3)Y-K36H each contain a histidine residue whose protonation perturbs the fluorescence of Y32. We show that these variants are stable and well-folded proteins whose helical content, tertiary structure, solution aggregation state, and solvent-sequestered position of Y32 remain pH insensitive across a range of at least 3-4 pH units. These results confirm that the local environment of Y32 can be altered and the resulting radical site studied by voltammetry over a broad pH range without interference from long-range structural effects.
本报告描述了一种专门设计的模型蛋白,用于电化学研究蛋白质酪氨酸自由基的还原电位随 pH 值的变化。该模型系统基于 67 个残基的α(3)Y 三螺旋束。α(3)Y 在位置 32 处含有一个单一的埋藏酪氨酸,显示出固有蛋白质的结构特性。本报告介绍了在酸性(pH 5.6)和碱性(pH 8.3)条件下从α(3)Y 获得的差分脉冲伏安图。观察到的法拉第响应与 Y32 唯一相关,如定点突变所示。这是首次成功应用伏安法检测到位于结构蛋白环境中的氧化还原活性酪氨酸。酪氨酸是质子偶联电子转移辅助因子,使得基于伏安法的 pH 滴定成为一种核心实验方法。进行了第二组实验以证明可以在不引入蛋白质支架大结构变化的情况下对氧化还原活性酪氨酸进行 pH 依赖性研究。α(3)Y 经过重新设计,目的是将组氨酸的咪唑基团置于 Y32 酚环附近。α(3)Y-K29H 和 α(3)Y-K36H 均含有一个组氨酸残基,其质子化会干扰 Y32 的荧光。我们表明,这些变体是稳定且折叠良好的蛋白质,其螺旋含量、三级结构、溶液聚集状态和 Y32 的溶剂隔离位置在至少 3-4 pH 单位的范围内对 pH 不敏感。这些结果证实,可以在不干扰长程结构效应的情况下,通过伏安法在宽 pH 范围内改变 Y32 的局部环境并研究由此产生的自由基位点。