Physikalisches Institut, Albert-Ludwigs-Universität, Freiburg, Germany.
J R Soc Interface. 2012 May 7;9(70):1084-92. doi: 10.1098/rsif.2011.0433. Epub 2011 Oct 19.
Computational modelling of cell motility on substrates is a formidable challenge; regulatory pathways are intertwined and forces that influence cell motion are not fully quantified. Additional challenges arise from the need to describe a moving deformable cell boundary. Here, we present a simple mathematical model coupling cell shape dynamics, treated by the phase-field approach, to a vector field describing the mean orientation (polarization) of the actin filament network. The model successfully reproduces the primary phenomenology of cell motility: discontinuous onset of motion, diversity of cell shapes and shape oscillations. The results are in qualitative agreement with recent experiments on motility of keratocyte cells and cell fragments. The asymmetry of the shapes is captured to a large extent in this simple model, which may prove useful for the interpretation of experiments.
细胞在基底上的运动的计算模型是一个艰巨的挑战;调控途径相互交织,影响细胞运动的力也没有被完全量化。此外,还需要描述一个运动的可变形细胞边界,这也带来了额外的挑战。在这里,我们提出了一个简单的数学模型,将细胞形状动力学(通过相场方法处理)与描述肌动蛋白丝网络平均方向(极化)的向量场耦合起来。该模型成功地再现了细胞运动的主要现象学:运动的不连续开始、细胞形状的多样性和形状的振荡。该结果与最近关于角膜细胞和细胞碎片运动的实验定性一致。在这个简单的模型中,很大程度上捕捉到了形状的不对称性,这可能对实验的解释有用。