Suppr超能文献

进化使神经元变大的两种不同方式。

Two different ways evolution makes neurons larger.

作者信息

Bekkers J M, Stevens C F

机构信息

Section of Molecular Neurobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510.

出版信息

Prog Brain Res. 1990;83:37-45. doi: 10.1016/s0079-6123(08)61239-x.

Abstract

As evolution makes larger brains it also increases the size of many of the individual neurons that make up the brain. How neurons are made larger can give clues about design principles of the brain's circuits. One way of making a larger neuron is called conservative scaling. If evolution magnifies a particular type of neuron by a factor of two-that is, each dendrite is made twice as long-then the neuron is scaled conservatively if the magnified neuron has dendrites with 4 times the diameter of their unscaled counterparts. This type of scaling leaves the passive cable properties of the neuron unchanged and so maintains a balance in effectiveness between proximal and distal dendritic inputs. One might imagine that, for some types of circuits, maintaining such a balance would be necessary to use just the same neuronal interconnections in both large and small brains. We have compared dentate granule cells and CA1 pyramidal neurons in cat and human to establish how these cell types are, in fact, scaled. Both cell types are larger in human than in cat, even though their general form is conserved. Pyramidal neurons scale conservatively, but dentate granule cells do not. The CA1 circuits seem, then, to require conservation of the passive cable properties of their elements, whereas dentate does not. We suggest that the reason CA1 neurons scale conservatively is that, for this region, each individual synaptic input exerts a significant effect on the cell's output, whereas in dentate the neuronal output represents the average of a large number of anonymous individual inputs.

摘要

随着进化使大脑变大,构成大脑的许多单个神经元的大小也会增加。神经元如何变大可以为大脑回路的设计原则提供线索。使神经元变大的一种方式称为保守缩放。如果进化将某一特定类型的神经元放大两倍——也就是说,每个树突的长度变为原来的两倍——那么当放大后的神经元树突直径是未缩放对应树突直径的4倍时,该神经元就是保守缩放的。这种缩放方式使神经元的被动电缆特性保持不变,从而在近端和远端树突输入的有效性之间维持平衡。人们可能会想象,对于某些类型的回路来说,在大小不同的大脑中使用完全相同的神经元互连方式时,维持这种平衡是必要的。我们比较了猫和人类的齿状颗粒细胞和CA1锥体神经元,以确定这些细胞类型实际上是如何缩放的。尽管这两种细胞类型的总体形态得以保留,但在人类中它们都比猫中的更大。锥体神经元进行保守缩放,但齿状颗粒细胞并非如此。那么,CA1回路似乎需要其组成部分的被动电缆特性保持不变,而齿状回则不需要。我们认为CA1神经元进行保守缩放的原因是,对于该区域而言,每个单独的突触输入都会对细胞的输出产生显著影响,而在齿状回中,神经元的输出代表大量无特征的单独输入的平均值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验