Suppr超能文献

复杂的种群动态与中性条件下的复合分歧

Complex population dynamics and the coalescent under neutrality.

机构信息

Department of Epidemiology, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Genetics. 2012 Jan;190(1):187-201. doi: 10.1534/genetics.111.134627. Epub 2011 Oct 31.

Abstract

Estimates of the coalescent effective population size N(e) can be poorly correlated with the true population size. The relationship between N(e) and the population size is sensitive to the way in which birth and death rates vary over time. The problem of inference is exacerbated when the mechanisms underlying population dynamics are complex and depend on many parameters. In instances where nonparametric estimators of N(e) such as the skyline struggle to reproduce the correct demographic history, model-based estimators that can draw on prior information about population size and growth rates may be more efficient. A coalescent model is developed for a large class of populations such that the demographic history is described by a deterministic nonlinear dynamical system of arbitrary dimension. This class of demographic model differs from those typically used in population genetics. Birth and death rates are not fixed, and no assumptions are made regarding the fraction of the population sampled. Furthermore, the population may be structured in such a way that gene copies reproduce both within and across demes. For this large class of models, it is shown how to derive the rate of coalescence, as well as the likelihood of a gene genealogy with heterochronous sampling and labeled taxa, and how to simulate a coalescent tree conditional on a complex demographic history. This theoretical framework encapsulates many of the models used by ecologists and epidemiologists and should facilitate the integration of population genetics with the study of mathematical population dynamics.

摘要

有效群体大小 N(e) 的估计值与真实种群大小可能相关性较差。N(e)与种群大小之间的关系对出生率和死亡率随时间变化的方式非常敏感。当种群动态的机制复杂且取决于许多参数时,推断问题会更加严重。在非参数 N(e)估计器(例如天际线)难以再现正确的人口历史的情况下,基于模型的估计器可以利用有关人口规模和增长率的先验信息,可能更有效。为一大类种群开发了一种合并模型,使得人口历史由任意维数的确定性非线性动力系统来描述。这种人口模型与通常在群体遗传学中使用的模型不同。出生率和死亡率不是固定的,并且对抽样的种群比例没有任何假设。此外,种群的结构可能使得基因副本在种群内和种群间都进行复制。对于这一大类模型,展示了如何推导合并率,以及如何推导具有异时采样和标记分类单元的基因谱系的似然性,以及如何在复杂的人口历史条件下模拟合并树。这个理论框架包含了生态学家和流行病学家使用的许多模型,应该有助于将群体遗传学与数学人口动态的研究相结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a84/3249372/2b2b05897306/187fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验