Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan.
J Gen Physiol. 2011 Nov;138(5):521-35. doi: 10.1085/jgp.201110677.
KCNQ1 channels are voltage-gated potassium channels that are widely expressed in various non-neuronal tissues, such as the heart, pancreas, and intestine. KCNE proteins are known as the auxiliary subunits for KCNQ1 channels. The effects and functions of the different KCNE proteins on KCNQ1 modulation are various; the KCNQ1-KCNE1 ion channel complex produces a slowly activating potassium channel that is crucial for heartbeat regulation, while the KCNE3 protein makes KCNQ1 channels constitutively active, which is important for K(+) and Cl(-) transport in the intestine. The mechanisms by which KCNE proteins modulate KCNQ1 channels have long been studied and discussed; however, it is not well understood how different KCNE proteins exert considerably different effects on KCNQ1 channels. Here, we approached this point by taking advantage of the recently isolated Ci-KCNQ1, a KCNQ1 homologue from marine invertebrate Ciona intestinalis. We found that Ci-KCNQ1 alone could be expressed in Xenopus laevis oocytes and produced a voltage-dependent potassium current, but that Ci-KCNQ1 was not properly modulated by KCNE1 and totally unaffected by coexpression of KCNE3. By making chimeras of Ci-KCNQ1 and human KCNQ1, we determined several amino acid residues located in the pore region of human KCNQ1 involved in KCNE1 modulation. Interestingly, though, these amino acid residues of the pore region are not important for KCNE3 modulation, and we subsequently found that the S1 segment plays an important role in making KCNQ1 channels constitutively active by KCNE3. Our findings indicate that different KCNE proteins use different domains of KCNQ1 channels, and that may explain why different KCNE proteins give quite different outcomes by forming a complex with KCNQ1 channels.
KCNQ1 通道是电压门控钾通道,广泛表达于各种非神经元组织,如心脏、胰腺和肠道。KCNE 蛋白被认为是 KCNQ1 通道的辅助亚基。不同的 KCNE 蛋白对 KCNQ1 调节的影响和功能各不相同;KCNQ1-KCNE1 离子通道复合物产生一种缓慢激活的钾通道,对心跳调节至关重要,而 KCNE3 蛋白使 KCNQ1 通道持续激活,这对肠道中 K(+)和 Cl(-)的转运很重要。KCNE 蛋白调节 KCNQ1 通道的机制长期以来一直受到研究和讨论;然而,不同的 KCNE 蛋白如何对 KCNQ1 通道产生相当不同的影响尚不清楚。在这里,我们利用最近分离的 Ci-KCNQ1 来解决这一问题,Ci-KCNQ1 是一种来自海洋无脊椎动物 Ciona intestinalis 的 KCNQ1 同源物。我们发现 Ci-KCNQ1 本身可以在非洲爪蟾卵母细胞中表达,并产生电压依赖性钾电流,但 Ci-KCNQ1 不能被 KCNE1 正确调节,并且不受 KCNE3 共表达的影响。通过制作 Ci-KCNQ1 和人 KCNQ1 的嵌合体,我们确定了位于人 KCNQ1 孔区的几个氨基酸残基参与 KCNE1 调节。有趣的是,尽管这些孔区的氨基酸残基对于 KCNE3 调节不重要,但我们随后发现 S1 片段在 KCNE3 使 KCNQ1 通道持续激活中起着重要作用。我们的发现表明,不同的 KCNE 蛋白使用 KCNQ1 通道的不同结构域,这可能解释了为什么不同的 KCNE 蛋白通过与 KCNQ1 通道形成复合物而产生截然不同的结果。