National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Trends Cell Biol. 2011 Dec;21(12):682-91. doi: 10.1016/j.tcb.2011.09.008. Epub 2011 Oct 31.
The power of fluorescence microscopy to study cellular structures and macromolecular complexes spans a wide range of size scales, from studies of cell behavior and function in physiological 3D environments to understanding the molecular architecture of organelles. At each length scale, the challenge in 3D imaging is to extract the most spatial and temporal resolution possible while limiting photodamage/bleaching to living cells. Several advances in 3D fluorescence microscopy now offer higher resolution, improved speed, and reduced photobleaching relative to traditional point-scanning microscopy methods. We discuss a few specific microscopy modalities that we believe will be particularly advantageous in imaging cells and subcellular structures in physiologically relevant 3D environments.
荧光显微镜在研究细胞结构和大分子复合物方面的功能跨越了广泛的尺寸范围,从研究生理 3D 环境中的细胞行为和功能到了解细胞器的分子结构。在每个长度尺度上,3D 成像的挑战是在限制活细胞光损伤/漂白的同时,尽可能提取最高的空间和时间分辨率。与传统的点扫描显微镜方法相比,目前有几种 3D 荧光显微镜的进展提供了更高的分辨率、更快的速度和更少的光漂白。我们讨论了几种我们认为在生理相关的 3D 环境中成像细胞和亚细胞结构特别有利的显微镜模式。