Suppr超能文献

基于独立成分特征的 EEG 和 fMRI 数据对信念决策的单次试验解码。

Single trial decoding of belief decision making from EEG and fMRI data using independent components features.

机构信息

LINT Laboratory, University of California, Los Angeles Los Angeles, CA, USA.

出版信息

Front Hum Neurosci. 2013 Jul 31;7:392. doi: 10.3389/fnhum.2013.00392. eCollection 2013.

Abstract

The complex task of assessing the veracity of a statement is thought to activate uniquely distributed brain regions based on whether a subject believes or disbelieves a given assertion. In the current work, we present parallel machine learning methods for predicting a subject's decision response to a given propositional statement based on independent component (IC) features derived from EEG and fMRI data. Our results demonstrate that IC features outperformed features derived from event related spectral perturbations derived from any single spectral band, yet were similar to accuracy across all spectral bands combined. We compared our diagnostic IC spatial maps with our conventional general linear model (GLM) results, and found that informative ICs had significant spatial overlap with our GLM results, yet also revealed unique regions like amygdala that were not statistically significant in GLM analyses. Overall, these results suggest that ICs may yield a parsimonious feature set that can be used along with a decision tree structure for interpretation of features used in classifying complex cognitive processes such as belief and disbelief across both fMRI and EEG neuroimaging modalities.

摘要

评估陈述真实性的复杂任务被认为会根据主体是否相信或不相信给定的断言来激活独特分布的大脑区域。在当前的工作中,我们提出了基于独立成分(IC)特征的预测主体对给定命题陈述的决策反应的并行机器学习方法,这些特征源自 EEG 和 fMRI 数据。我们的结果表明,IC 特征的表现优于从任何单个光谱带中得出的源自事件相关光谱扰动的特征,但在所有组合的光谱带中具有相似的准确性。我们将我们的诊断 IC 空间图谱与我们的传统一般线性模型(GLM)结果进行了比较,发现信息丰富的 IC 与我们的 GLM 结果具有显著的空间重叠,但也揭示了一些独特的区域,如杏仁核,在 GLM 分析中并不具有统计学意义。总的来说,这些结果表明,IC 可以提供一个简洁的特征集,可以与决策树结构一起用于解释 fMRI 和 EEG 神经影像学模态中用于分类复杂认知过程(如信念和怀疑)的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a40/3728485/99854ab888ec/fnhum-07-00392-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验