Suppr超能文献

扩展无标记质谱定量亲和纯化的动态范围。

Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications.

机构信息

Institute of Physiology, University of Freiburg, 79104 Freiburg, Germany.

出版信息

Mol Cell Proteomics. 2012 Feb;11(2):M111.007955. doi: 10.1074/mcp.M111.007955. Epub 2011 Nov 8.

Abstract

Affinity purification (AP) of protein complexes combined with LC-MS/MS analysis is the current method of choice for identification of protein-protein interactions. Their interpretation with respect to significance, specificity, and selectivity requires quantification methods coping with enrichment factors of more than 1000-fold, variable amounts of total protein, and low abundant, unlabeled samples. We used standardized samples (0.1-1000 fmol) measured on high resolution hybrid linear ion trap instruments (LTQ-FT/Orbitrap) to characterize and improve linearity and dynamic range of label-free approaches. Quantification based on spectral counts was limited by saturation and ion suppression effects with samples exceeding 100 ng of protein, depending on the instrument setup. In contrast, signal intensities of peptides (peak volumes) selected by a novel correlation-based method (TopCorr-PV) were linear over at least 4 orders of magnitude and allowed for accurate relative quantification of standard proteins spiked into a complex protein background. Application of this procedure to APs of the voltage-gated potassium channel Kv1.1 as a model membrane protein complex unambiguously identified the whole set of known interaction partners together with novel candidates. In addition to discriminating these proteins from background, we could determine efficiency, cross-reactivities, and selection biases of the used purification antibodies. The enhanced dynamic range of the developed quantification procedure appears well suited for sensitive identification of specific protein-protein interactions, detection of antibody-related artifacts, and optimization of AP conditions.

摘要

亲和纯化 (AP) 结合 LC-MS/MS 分析是目前鉴定蛋白质-蛋白质相互作用的首选方法。为了确定其意义、特异性和选择性,需要使用能够应对 1000 倍以上富集因子、总蛋白量变化以及低丰度、未标记样品的定量方法。我们使用标准化样品(0.1-1000 fmol)在高分辨率混合线性离子阱仪器(LTQ-FT/Orbitrap)上进行测量,以表征和改善无标记方法的线性度和动态范围。基于谱计数的定量方法受到样品中超过 100ng 蛋白质的饱和和离子抑制效应的限制,具体取决于仪器设置。相比之下,通过一种新的基于相关性的方法(TopCorr-PV)选择的肽(峰体积)信号强度在至少 4 个数量级上呈线性,可用于准确相对定量标准蛋白质,即使在复杂蛋白质背景中也能进行。该程序在作为模型膜蛋白复合物的电压门控钾通道 Kv1.1 的 AP 中的应用明确鉴定了整套已知的相互作用伙伴,以及新的候选者。除了将这些蛋白质与背景区分开来,我们还可以确定所用纯化抗体的效率、交叉反应性和选择偏差。所开发的定量程序的增强动态范围似乎非常适合于敏感鉴定特定蛋白质-蛋白质相互作用、检测抗体相关伪影以及优化 AP 条件。

相似文献

9
LC-MS/MS-based quantification of efflux transporter proteins at the BBB.基于 LC-MS/MS 的 BBB 外排转运蛋白定量分析。
J Pharm Biomed Anal. 2019 Feb 5;164:496-508. doi: 10.1016/j.jpba.2018.11.013. Epub 2018 Nov 8.

引用本文的文献

9
HepaCAM controls astrocyte self-organization and coupling.HepaCAM 控制星形胶质细胞的自组织和偶联。
Neuron. 2021 Aug 4;109(15):2427-2442.e10. doi: 10.1016/j.neuron.2021.05.025. Epub 2021 Jun 24.

本文引用的文献

2
6
Addressing accuracy and precision issues in iTRAQ quantitation.解决 iTRAQ 定量分析中的准确性和精密度问题。
Mol Cell Proteomics. 2010 Sep;9(9):1885-97. doi: 10.1074/mcp.M900628-MCP200. Epub 2010 Apr 10.
7
Proteomic analyses of native brain K(V)4.2 channel complexes.天然脑K(V)4.2通道复合物的蛋白质组学分析。
Channels (Austin). 2009 Jul-Aug;3(4):284-94. doi: 10.4161/chan.3.4.9553. Epub 2009 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验