Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA.
J Mater Sci Mater Med. 2012 Feb;23(2):537-46. doi: 10.1007/s10856-011-4486-1. Epub 2011 Nov 10.
Bionanocomposite scaffolds comprised of nanomaterials and the extracellular matrix (ECM) of porcine diaphragm tissue capitalizes on the benefits of utilizing a natural ECM material, while also potentially enhancing physicomechanical properties and biocompatibility through nanomaterials. Gold nanoparticle (AuNP) bionanocomposite scaffolds were subjected to a number of characterization techniques to determine whether the fabrication process negatively impacted the properties of the porcine diaphragm tissue and whether the AuNP improved the properties of the tissue. Tensile testing and differential scanning calorimetry demonstrated that the bionanocomposite possessed improved tensile strength and thermal stability relative to natural tissue. The collagenase assay and Fourier transform infrared spectroscopy additionally confirmed that denaturation of the collagen of the ECM did not occur. The novel bionanocomposite scaffold possessed properties similar to commercially available scaffolds and will be further developed for soft tissue applications such as hernia repair through in vivo studies in an animal model.
基于猪膈肌组织细胞外基质的纳米复合材料支架结合了利用天然细胞外基质材料的优势,同时通过纳米材料有可能提高物理机械性能和生物相容性。金纳米粒子(AuNP)的生物纳米复合材料支架经过了多种特性鉴定技术的检验,以确定制造过程是否会对猪膈肌组织的特性产生负面影响,以及 AuNP 是否会改善组织的特性。拉伸试验和差示扫描量热法表明,与天然组织相比,生物纳米复合材料具有更高的拉伸强度和热稳定性。胶原酶分析和傅里叶变换红外光谱进一步证实,细胞外基质的胶原并未发生变性。新型生物纳米复合材料支架具有类似于市售支架的特性,将通过动物模型的体内研究进一步开发用于软组织应用,例如疝修补。