Suppr超能文献

RGDfK-金纳米棒缀合物用于前列腺癌治疗的生物学评价。

Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment.

机构信息

Department of Bioengineering, Nano Institute of Utah, Salt Lake City, UT, USA.

出版信息

J Drug Target. 2011 Dec;19(10):915-24. doi: 10.3109/1061186X.2011.623701.

Abstract

Selective delivery of gold nanorods (GNRs) to sites of prostate tumor angiogenesis is potentially advantageous for localized photothermal therapy. Here, we report the cellular uptake and biodistribution of GNRs surface functionalized with the cyclic RGDfK peptide. The GNRs were synthesized to have a surface plasmon resonance (SPR) peak at 800?nm and grafted with a thiolated poly(ethylene glycol) (PEG) corona with or without RGDfK. The binding and uptake of the targeted (RGDfK) and untargeted GNRs were evaluated in DU145 prostate cancer and human umbilical vein endothelial cells (HUVEC) by high-resolution dark field microscopy, inductively coupled plasma mass spectrometry (ICP-MS), and transmission electron microscopy (TEM). The biodistribution of both GNRs was then evaluated in prostate tumor bearing mice. Targeting of the RGDfK surface-modified GNRs was confirmed in vitro due to selective binding and uptake by endothelial cells. Tumor targeting was not observed in vivo, however, due to fast clearance of the RGDfK-GNRs from the blood. Further modifications of the nanoparticle?s surface properties are needed to enhance localization of the targetable system in sites of tumor angiogenesis.

摘要

将金纳米棒(GNRs)选择性递送到前列腺肿瘤血管生成部位,对于局部光热治疗具有潜在优势。在这里,我们报告了经环 RGDfK 肽修饰的 GNRs 的细胞摄取和生物分布。GNRs 的合成使其表面等离子体共振(SPR)峰值在 800nm 处,并与带有或不带有 RGDfK 的巯基化聚(乙二醇)(PEG)冠接枝。通过高分辨率暗场显微镜、电感耦合等离子体质谱(ICP-MS)和透射电子显微镜(TEM)评估了靶向(RGDfK)和非靶向 GNRs 在 DU145 前列腺癌细胞和人脐静脉内皮细胞(HUVEC)中的结合和摄取。然后,在荷前列腺肿瘤小鼠中评估了两种 GNRs 的生物分布。由于内皮细胞的选择性结合和摄取,体外证实了 RGDfK 表面修饰的 GNRs 的靶向性。然而,由于 RGDfK-GNRs 从血液中快速清除,因此在体内未观察到肿瘤靶向性。需要进一步修饰纳米粒子的表面性质,以增强靶向系统在肿瘤血管生成部位的定位。

相似文献

1
Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment.
J Drug Target. 2011 Dec;19(10):915-24. doi: 10.3109/1061186X.2011.623701.
2
Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy.
J Control Release. 2011 May 10;151(3):263-70. doi: 10.1016/j.jconrel.2010.12.015. Epub 2011 Jan 9.
3
The impact of size and surface ligand of gold nanorods on liver cancer accumulation and photothermal therapy in the second near-infrared window.
J Colloid Interface Sci. 2020 Apr 1;565:186-196. doi: 10.1016/j.jcis.2020.01.026. Epub 2020 Jan 13.
4
Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2.
Nanomedicine (Lond). 2017 Oct;12(20):2503-2517. doi: 10.2217/nnm-2017-0181. Epub 2017 Sep 8.
5
Synthesis and Bioevaluation of Iodine-131 Directly Labeled Cyclic RGD-PEGylated Gold Nanorods for Tumor-Targeted Imaging.
Contrast Media Mol Imaging. 2017 Dec 24;2017:6081724. doi: 10.1155/2017/6081724. eCollection 2017.
7
Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia.
J Control Release. 2015 Dec 28;220(Pt A):245-252. doi: 10.1016/j.jconrel.2015.10.036. Epub 2015 Oct 23.
8
Multifunctional gold nanorods and docetaxel-encapsulated liposomes for combined thermo- and chemotherapy.
Int J Nanomedicine. 2017 Oct 25;12:7869-7884. doi: 10.2147/IJN.S143977. eCollection 2017.
9
Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas.
Cancer Res. 2009 May 1;69(9):3892-900. doi: 10.1158/0008-5472.CAN-08-4242. Epub 2009 Apr 14.

引用本文的文献

3
The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors.
Chem Rev. 2021 Feb 10;121(3):1746-1803. doi: 10.1021/acs.chemrev.0c00779. Epub 2021 Jan 14.
4
5
Enhanced efficacy of combination heat shock targeted polymer therapeutics with high intensity focused ultrasound.
Nanomedicine. 2017 Apr;13(3):1235-1243. doi: 10.1016/j.nano.2016.11.014. Epub 2016 Nov 29.
6
RGDfK-functionalized gold nanorods bind only to activated platelets.
J Biomed Mater Res A. 2017 Jan;105(1):209-217. doi: 10.1002/jbm.a.35902. Epub 2016 Oct 11.
7
Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia.
J Control Release. 2015 Dec 28;220(Pt A):245-252. doi: 10.1016/j.jconrel.2015.10.036. Epub 2015 Oct 23.
10
Tumor Targeting via Integrin Ligands.
Front Oncol. 2013 Aug 30;3:222. doi: 10.3389/fonc.2013.00222.

本文引用的文献

1
Gold nanorod mediated plasmonic photothermal therapy: a tool to enhance macromolecular delivery.
Int J Pharm. 2011 Aug 30;415(1-2):315-8. doi: 10.1016/j.ijpharm.2011.05.068. Epub 2011 Jun 12.
3
Cyclic RGD functionalized gold nanoparticles for tumor targeting.
Bioconjug Chem. 2011 Apr 20;22(4):664-72. doi: 10.1021/bc100448r. Epub 2011 Mar 24.
4
Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy.
Int J Nanomedicine. 2011;6:259-69. doi: 10.2147/IJN.S15479. Epub 2011 Jan 27.
5
The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles.
Biomaterials. 2011 May;32(13):3435-46. doi: 10.1016/j.biomaterials.2011.01.021. Epub 2011 Feb 4.
6
Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy.
J Control Release. 2011 May 10;151(3):263-70. doi: 10.1016/j.jconrel.2010.12.015. Epub 2011 Jan 9.
7
Comparative biodistribution of PAMAM dendrimers and HPMA copolymers in ovarian-tumor-bearing mice.
Biomacromolecules. 2011 Jan 10;12(1):88-96. doi: 10.1021/bm101046d. Epub 2010 Dec 3.
8
Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages.
Eur J Pharm Biopharm. 2011 Apr;77(3):417-23. doi: 10.1016/j.ejpb.2010.11.010. Epub 2010 Nov 18.
10
HPMA copolymers: origins, early developments, present, and future.
Adv Drug Deliv Rev. 2010 Feb 17;62(2):122-49. doi: 10.1016/j.addr.2009.10.004. Epub 2009 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验