Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA.
EMBO J. 2011 Nov 15;30(24):4860-73. doi: 10.1038/emboj.2011.401.
It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O(2) at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F(1)F(0) ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential.
基于大量形态学证据,人们普遍认为人类多能干细胞(hPSCs)含有发育不全、生物能量活性低的线粒体。相比之下,分化细胞具有分支的线粒体网络,氧化磷酸化为主要能量来源。因此,线粒体在 hPSC 生物能量学和细胞分化中的作用仍然不确定。在这里,我们表明 hPSCs 具有功能齐全的呼吸复合物,能够以最大容量消耗 O(2)。尽管如此,hPSCs 中的 ATP 生成主要通过糖酵解进行,ATP 通过 F(1)F(0)ATP 合酶消耗,以部分维持 hPSC 线粒体膜电位和细胞活力。解偶联蛋白 2(UCP2)通过阻止线粒体葡萄糖氧化和通过底物分流机制促进糖酵解,在 hPSC 能量代谢中发挥调节作用。随着早期分化,hPSC 增殖减缓,能量代谢减少,UCP2 受到抑制,导致糖酵解减少,而线粒体葡萄糖氧化保持或增加。异位 UCP2 表达扰乱了这种代谢转变并损害了 hPSC 分化。总体而言,hPSCs 含有活跃的线粒体,并且需要 UCP2 的抑制作用来发挥其完全分化潜能。