Suppr超能文献

UCP2 调节人多能干细胞的能量代谢和分化潜能。

UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells.

机构信息

Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA.

出版信息

EMBO J. 2011 Nov 15;30(24):4860-73. doi: 10.1038/emboj.2011.401.

Abstract

It has been assumed, based largely on morphologic evidence, that human pluripotent stem cells (hPSCs) contain underdeveloped, bioenergetically inactive mitochondria. In contrast, differentiated cells harbour a branched mitochondrial network with oxidative phosphorylation as the main energy source. A role for mitochondria in hPSC bioenergetics and in cell differentiation therefore remains uncertain. Here, we show that hPSCs have functional respiratory complexes that are able to consume O(2) at maximal capacity. Despite this, ATP generation in hPSCs is mainly by glycolysis and ATP is consumed by the F(1)F(0) ATP synthase to partially maintain hPSC mitochondrial membrane potential and cell viability. Uncoupling protein 2 (UCP2) plays a regulating role in hPSC energy metabolism by preventing mitochondrial glucose oxidation and facilitating glycolysis via a substrate shunting mechanism. With early differentiation, hPSC proliferation slows, energy metabolism decreases, and UCP2 is repressed, resulting in decreased glycolysis and maintained or increased mitochondrial glucose oxidation. Ectopic UCP2 expression perturbs this metabolic transition and impairs hPSC differentiation. Overall, hPSCs contain active mitochondria and require UCP2 repression for full differentiation potential.

摘要

基于大量形态学证据,人们普遍认为人类多能干细胞(hPSCs)含有发育不全、生物能量活性低的线粒体。相比之下,分化细胞具有分支的线粒体网络,氧化磷酸化为主要能量来源。因此,线粒体在 hPSC 生物能量学和细胞分化中的作用仍然不确定。在这里,我们表明 hPSCs 具有功能齐全的呼吸复合物,能够以最大容量消耗 O(2)。尽管如此,hPSCs 中的 ATP 生成主要通过糖酵解进行,ATP 通过 F(1)F(0)ATP 合酶消耗,以部分维持 hPSC 线粒体膜电位和细胞活力。解偶联蛋白 2(UCP2)通过阻止线粒体葡萄糖氧化和通过底物分流机制促进糖酵解,在 hPSC 能量代谢中发挥调节作用。随着早期分化,hPSC 增殖减缓,能量代谢减少,UCP2 受到抑制,导致糖酵解减少,而线粒体葡萄糖氧化保持或增加。异位 UCP2 表达扰乱了这种代谢转变并损害了 hPSC 分化。总体而言,hPSCs 含有活跃的线粒体,并且需要 UCP2 的抑制作用来发挥其完全分化潜能。

相似文献

1
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells.
EMBO J. 2011 Nov 15;30(24):4860-73. doi: 10.1038/emboj.2011.401.
2
UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):960-5. doi: 10.1073/pnas.1317400111. Epub 2014 Jan 6.
4
Increased activity of mitochondrial uncoupling protein 2 improves stress resistance in cultured endothelial cells exposed in vitro to high glucose levels.
Am J Physiol Heart Circ Physiol. 2015 Jul 1;309(1):H147-56. doi: 10.1152/ajpheart.00759.2014. Epub 2015 Apr 24.
5
Human pluripotent stem cells decouple respiration from energy production.
EMBO J. 2011 Dec 14;30(24):4851-2. doi: 10.1038/emboj.2011.436.
6
Role of UCP2 in the Energy Metabolism of the Cancer Cell Line A549.
Int J Mol Sci. 2023 May 1;24(9):8123. doi: 10.3390/ijms24098123.
7
Uncoupling protein-2 modulates myocardial excitation-contraction coupling.
Circ Res. 2010 Mar 5;106(4):730-8. doi: 10.1161/CIRCRESAHA.109.206631. Epub 2010 Jan 7.
8
Mitochondrial UCP2 in the central regulation of metabolism.
Best Pract Res Clin Endocrinol Metab. 2014 Oct;28(5):757-64. doi: 10.1016/j.beem.2014.02.006. Epub 2014 Mar 7.
9
Measuring mitochondrial uncoupling protein-2 level and activity in insulinoma cells.
Methods Enzymol. 2013;528:257-67. doi: 10.1016/B978-0-12-405881-1.00015-X.

引用本文的文献

1
Serine synthesis pathway regulates cardiac differentiation from human pluripotent stem cells.
iScience. 2025 Jun 7;28(7):112843. doi: 10.1016/j.isci.2025.112843. eCollection 2025 Jul 18.
3
Lactylation of Hdac1 regulated by Ldh prevents the pluripotent-to-2C state conversion.
Stem Cell Res Ther. 2024 Nov 13;15(1):415. doi: 10.1186/s13287-024-04027-1.
4
Regulation of glucose metabolism: Effects on oocyte, preimplantation embryo, assisted reproductive technology and embryonic stem cell.
Heliyon. 2024 Sep 28;10(19):e38551. doi: 10.1016/j.heliyon.2024.e38551. eCollection 2024 Oct 15.
5
piRNAs are regulators of metabolic reprogramming in stem cells.
Nat Commun. 2024 Sep 27;15(1):8405. doi: 10.1038/s41467-024-52709-4.
9
Mitochondrial metabolism regulation and epigenetics in hypoxia.
Front Physiol. 2024 Jun 10;15:1393232. doi: 10.3389/fphys.2024.1393232. eCollection 2024.
10
C-metabolic flux analysis reveals metabolic rewiring in HL-60 neutrophil-like cells through differentiation and immune stimulation.
Metab Eng Commun. 2024 May 27;18:e00239. doi: 10.1016/j.mec.2024.e00239. eCollection 2024 Jun.

本文引用的文献

2
4
Tracer-based metabolomics: concepts and practices.
Clin Biochem. 2010 Nov;43(16-17):1269-77. doi: 10.1016/j.clinbiochem.2010.07.027. Epub 2010 Aug 14.
6
Uncoupling protein UCP2: when mitochondrial activity meets immunity.
FEBS Lett. 2010 Apr 16;584(8):1437-42. doi: 10.1016/j.febslet.2010.03.014. Epub 2010 Mar 15.
8
PINK1 is selectively stabilized on impaired mitochondria to activate Parkin.
PLoS Biol. 2010 Jan 26;8(1):e1000298. doi: 10.1371/journal.pbio.1000298.
9
Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation.
J Mol Cell Cardiol. 2010 Apr;48(4):725-34. doi: 10.1016/j.yjmcc.2009.12.014. Epub 2010 Jan 4.
10
Energetic requirements and bioenergetic modulation of mitochondrial morphology and dynamics.
Semin Cell Dev Biol. 2010 Aug;21(6):558-65. doi: 10.1016/j.semcdb.2009.12.006. Epub 2009 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验