Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.
BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108.
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20716-20724. doi: 10.1073/pnas.1912498116. Epub 2019 Sep 23.
Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.
还原菌将电子引导至其外表面,在那里不溶性金属氧化物或电极充当末端电子受体,从厌氧呼吸中产生电流。 是一种通常富集的发电生物体,形成厚厚的导电生物膜,通过支持与电极没有直接接触的细胞的呼吸来放大总活性。解释为什么这些生物膜未能产生更高电流密度的假说表明,由于 pH 值、养分或氧化还原电位梯度的形成而受到抑制;但这些解释往往相互矛盾,并且缺乏对生物膜内细胞生长的直接测量,这使得无法在这些模型之间进行区分。为了解决这个基本问题,我们使用稳定同位素探测与纳米二次离子质谱 (nanoSIMS) 结合,测量了 生物膜的合成代谢活性。我们的结果表明,最活跃的细胞位于阳极表面,并且这种活性随距离而降低,在距电极 10 µm 处达到最小值。在 80 µm 厚的几周龄生物膜中,最接近电极的细胞继续以最大速率生长,表明养分或缓冲液向生物膜中的扩散不是限速步骤。这种模式,即最高活性发生在电极处并随每个细胞层下降,存在于薄生物膜(<5 µm)和完全生长的生物膜(>20 µm)以及不同的阳极氧化还原电位中。这些结果表明,与在微米距离处呼吸不溶性电子受体相关的生长惩罚,这对改善微生物电化学装置以及我们对利用微生物电导率现象的共生关联的理解都具有重要意义。