Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
Neuroimage. 2012 Feb 15;59(4):3075-84. doi: 10.1016/j.neuroimage.2011.11.030. Epub 2011 Nov 18.
Previous studies suggest that spontaneous fluctuations in the resting-state fMRI (RS-fMRI) signal may reflect fluctuations in transverse relaxation time (T(2)()) rather than spin density (S(0)). However, such S(0) and T(2)() features have not been well characterized. In this study, spatial and spectral characteristics of functional connectivity on sensorimotor, default-mode, dorsal attention, and primary visual systems were examined using a multiple gradient-echo sequence at 3T. In the spatial domain, we found broad, local correlations at short echo times (TE ≤ 14 ms) due to dominant S(0) contribution, whereas long-range connections mediated by T(2)() became explicit at TEs longer than 22 ms. In the frequency domain, compared with the flat spectrum of S(0), spectral power of the T(2)()-weighted signal elevated significantly with increasing TE, particularly in the frequency ranges of 0.008-0.023 Hz and 0.037-0.043 Hz. Using the S(0) spectrum as a reference, we propose two indices to measure spectral signal change (SSC) and spectral contrast-to-noise ratio (SCNR), respectively, for quantifying the RS-fMRI signal. These indices demonstrated TE dependency of connectivity-related fluctuation strength, resembling functional contrasts in activation-based fMRI. These findings further confirm that large-scale functional circuit connectivity based on BOLD contrast may be constrained within specific frequency ranges in every brain network, and the spectral features of S(0) and T(2)(*) could be valuable for interpreting and quantifying RS-fMRI data.
先前的研究表明,静息态 fMRI(RS-fMRI)信号的自发波动可能反映了横向弛豫时间(T(2)())的波动,而不是自旋密度(S(0))。然而,S(0)和 T(2)()特征尚未得到很好的描述。在这项研究中,使用 3T 多梯度回波序列检查了感觉运动、默认模式、背侧注意和初级视觉系统的功能连接的空间和频谱特征。在空间域中,我们发现由于 S(0)贡献占主导地位,在短回波时间(TE ≤ 14ms)下存在广泛的局部相关性,而 T(2)()介导的远程连接在 TE 大于 22ms 时变得明显。在频域中,与 S(0)的平坦谱相比,T(2)()-加权信号的频谱功率随着 TE 的增加而显著升高,特别是在 0.008-0.023Hz 和 0.037-0.043Hz 的频率范围内。我们使用 S(0)谱作为参考,提出了两个指标来分别测量频谱信号变化(SSC)和频谱对比噪声比(SCNR),以量化 RS-fMRI 信号。这些指标显示了与 TE 相关的连接波动强度的依赖性,类似于基于激活的 fMRI 的功能对比。这些发现进一步证实,基于 BOLD 对比的大规模功能电路连接可能在每个脑网络中都受到特定频率范围的限制,S(0)和 T(2)(*)的频谱特征对于解释和量化 RS-fMRI 数据可能是有价值的。