Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
J Neurophysiol. 2012 Mar;107(5):1489-99. doi: 10.1152/jn.00827.2011. Epub 2011 Nov 30.
Nitric oxide (NO) is an important signaling molecule that regulates numerous physiological processes, including activity of respiratory motoneurons. However, molecular mechanism(s) underlying NO modulation of motoneurons remain obscure. Here, we used a combination of in vivo and in vitro recording techniques to examine NO modulation of motoneurons in the hypoglossal motor nucleus (HMN). Microperfusion of diethylamine (DEA; an NO donor) into the HMN of anesthetized adult rats increased genioglossus muscle activity. In the brain slice, whole cell current-clamp recordings from hypoglossal motoneurons showed that exposure to DEA depolarized membrane potential and increased responsiveness to depolarizing current injections. Under voltage-clamp conditions, we found that NO inhibited a Ba(2+)-sensitive background K(+) conductance and activated a Cs(+)-sensitive hyperpolarization-activated inward current (I(h)). When I(h) was blocked with Cs(+) or ZD-7288, the NO-sensitive K(+) conductance exhibited properties similar to TWIK-related acid-sensitive K(+) (TASK) channels, i.e., voltage independent, resistant to tetraethylammonium and 4-aminopyridine but inhibited by methanandamide. The soluble guanylyl cyclase blocker 1H-(1,2,4)oxadiazole(4,3-a)quinoxaline-1-one (ODQ) and the PKG blocker KT-5823 both decreased NO modulation of this TASK-like conductance. To characterize modulation of I(h) in relative isolation, we tested effects of NO in the presence of Ba(2+) to block TASK channels. Under these conditions, NO activated both the instantaneous (I(inst)) and time-dependent (I(ss)) components of I(h). Interestingly, at more hyperpolarized potentials NO preferentially increased I(inst). The effects of NO on I(h) were retained in the presence of ODQ and blocked by the cysteine-specific oxidant N-ethylmaleimide. These results suggest that NO activates hypoglossal motoneurons by cGMP-dependent inhibition of a TASK-like current and S-nitrosylation-dependent activation of I(h).
一氧化氮(NO)是一种重要的信号分子,调节许多生理过程,包括呼吸运动神经元的活性。然而,NO 调节运动神经元的分子机制仍不清楚。在这里,我们使用体内和体外记录技术的组合来检查舌下运动核(HMN)中 NO 对运动神经元的调节。将二乙胺(DEA;NO 供体)微灌注到麻醉成年大鼠的 HMN 中会增加颏舌肌的活动。在脑片上,从舌下运动神经元进行全细胞膜片钳记录显示,暴露于 DEA 会使膜电位去极化,并增加对去极化电流注射的反应性。在电压钳条件下,我们发现 NO 抑制了 Ba(2+)敏感的背景 K(+)电导,并激活了 Cs(+)敏感的超极化激活内向电流(I(h))。当用 Cs(+)或 ZD-7288 阻断 I(h)时,NO 敏感的 K(+)电导表现出与 TWIK 相关的酸敏感 K(+)(TASK)通道相似的特性,即电压不依赖性,对四乙铵和 4-氨基吡啶有抗性,但被甲酰胺抑制。可溶性鸟苷酸环化酶抑制剂 1H-(1,2,4)恶二唑(4,3-a)喹喔啉-1-酮(ODQ)和 PKG 抑制剂 KT-5823 均降低了 NO 对这种 TASK 样电导的调节。为了在相对隔离的情况下表征 I(h)的调制,我们测试了在存在 Ba(2+)的情况下 NO 的作用以阻断 TASK 通道。在这些条件下,NO 激活了 I(h)的瞬时(I(inst))和时变(I(ss))分量。有趣的是,在更超极化的电位下,NO 优先增加 I(inst)。NO 对 I(h)的影响在存在 ODQ 的情况下得以保留,并被半胱氨酸特异性氧化剂 N-乙基马来酰亚胺阻断。这些结果表明,NO 通过 cGMP 依赖性抑制 TASK 样电流和 S-亚硝酰化依赖性激活 I(h)来激活舌下运动神经元。