Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
BMC Genomics. 2011 Dec 2;12:592. doi: 10.1186/1471-2164-12-592.
The incidence of congenital heart disease (CHD) is continuously increasing among infants born alive nowadays, making it one of the leading causes of infant morbidity worldwide. Various studies suggest that both genetic and environmental factors lead to CHD, and therefore identifying its candidate genes and disease-markers has been one of the central topics in CHD research. By using the high-throughput genomic data of CHD which are available recently, network-based methods provide powerful alternatives of systematic analysis of complex diseases and identification of dysfunctional modules and candidate disease genes.
In this paper, by modeling the information flow from source disease genes to targets of differentially expressed genes via a context-specific protein-protein interaction network, we extracted dysfunctional modules which were then validated by various types of measurements and independent datasets. Network topology analysis of these modules revealed major and auxiliary pathways and cellular processes in CHD, demonstrating the biological usefulness of the identified modules. We also prioritized a list of candidate CHD genes from these modules using a guilt-by-association approach, which are well supported by various kinds of literature and experimental evidence.
We provided a network-based analysis to detect dysfunctional modules and disease genes of CHD by modeling the information transmission from source disease genes to targets of differentially expressed genes. Our method resulted in 12 modules from the constructed CHD subnetwork. We further identified and prioritized candidate disease genes of CHD from these dysfunctional modules. In conclusion, module analysis not only revealed several important findings with regard to the underlying molecular mechanisms of CHD, but also suggested the distinct network properties of causal disease genes which lead to identification of candidate CHD genes.
如今,活产婴儿先天性心脏病(CHD)的发病率持续上升,使其成为全球婴儿发病率的主要原因之一。各种研究表明,遗传和环境因素都会导致 CHD,因此,确定其候选基因和疾病标志物一直是 CHD 研究的核心课题之一。通过使用最近可得的 CHD 高通量基因组数据,基于网络的方法为复杂疾病的系统分析以及功能失调模块和候选疾病基因的识别提供了强有力的替代方案。
在本文中,我们通过在特定于上下文的蛋白质-蛋白质相互作用网络中,对源自疾病基因的信息流向差异表达基因的靶标进行建模,提取了功能失调模块,然后使用各种类型的测量和独立数据集对其进行了验证。对这些模块的网络拓扑分析揭示了 CHD 中的主要和辅助途径以及细胞过程,证明了所鉴定模块的生物学有用性。我们还使用关联罪责方法从这些模块中优先列出了一组候选 CHD 基因,这些基因得到了各种文献和实验证据的充分支持。
我们通过对源自疾病基因的信息流向差异表达基因的靶标进行建模,提供了一种基于网络的分析方法,用于检测 CHD 的功能失调模块和疾病基因。我们从构建的 CHD 子网中得到了 12 个模块。我们还从这些功能失调模块中鉴定和优先考虑了候选 CHD 基因。总之,模块分析不仅揭示了 CHD 潜在分子机制的几个重要发现,还提出了因果疾病基因的独特网络特性,从而鉴定出候选 CHD 基因。