Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Biochemistry. 2012 Jan 10;51(1):382-90. doi: 10.1021/bi201484k. Epub 2011 Dec 20.
To efficiently repair DNA, human alkyladenine DNA glycosylase (AAG) must search the million-fold excess of unmodified DNA bases to find a handful of DNA lesions. Such a search can be facilitated by the ability of glycosylases, like AAG, to interact with DNA using two affinities: a lower-affinity interaction in a searching process and a higher-affinity interaction for catalytic repair. Here, we present crystal structures of AAG trapped in two DNA-bound states. The lower-affinity depiction allows us to investigate, for the first time, the conformation of this protein in the absence of a tightly bound DNA adduct. We find that active site residues of AAG involved in binding lesion bases are in a disordered state. Furthermore, two loops that contribute significantly to the positive electrostatic surface of AAG are disordered. Additionally, a higher-affinity state of AAG captured here provides a fortuitous snapshot of how this enzyme interacts with a DNA adduct that resembles a one-base loop.
为了有效地修复 DNA,人类烷基腺嘌呤 DNA 糖基化酶 (AAG) 必须在百万倍于未修饰的 DNA 碱基的情况下搜索,以找到少量的 DNA 损伤。糖苷酶(如 AAG)能够使用两种亲和力与 DNA 相互作用,从而促进这种搜索:一种是在搜索过程中的低亲和力相互作用,另一种是用于催化修复的高亲和力相互作用。在这里,我们展示了 AAG 在两种 DNA 结合状态下被捕获的晶体结构。低亲和力描述允许我们首次在没有紧密结合的 DNA 加合物的情况下研究该蛋白的构象。我们发现,参与结合损伤碱基的 AAG 活性位点残基处于无序状态。此外,对 AAG 的正静电表面有重要贡献的两个环也是无序的。此外,这里捕获的 AAG 的高亲和力状态提供了一个偶然的快照,展示了这种酶如何与类似于一个碱基环的 DNA 加合物相互作用。