Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
Nature. 2011 Dec 7;480(7377):331-5. doi: 10.1038/nature10674.
Learning causes a change in how information is processed by neuronal circuits. Whereas synaptic plasticity, an important cellular mechanism, has been studied in great detail, we know much less about how learning is implemented at the level of neuronal circuits and, in particular, how interactions between distinct types of neurons within local networks contribute to the process of learning. Here we show that acquisition of associative fear memories depends on the recruitment of a disinhibitory microcircuit in the mouse auditory cortex. Fear-conditioning-associated disinhibition in auditory cortex is driven by foot-shock-mediated cholinergic activation of layer 1 interneurons, in turn generating inhibition of layer 2/3 parvalbumin-positive interneurons. Importantly, pharmacological or optogenetic block of pyramidal neuron disinhibition abolishes fear learning. Together, these data demonstrate that stimulus convergence in the auditory cortex is necessary for associative fear learning to complex tones, define the circuit elements mediating this convergence and suggest that layer-1-mediated disinhibition is an important mechanism underlying learning and information processing in neocortical circuits.
学习导致神经元回路处理信息的方式发生变化。虽然突触可塑性是一种重要的细胞机制,已经得到了深入研究,但我们对于学习在神经元回路水平上是如何实现的,以及特定类型的神经元在局部网络中的相互作用如何促进学习过程,了解得要少得多。在这里,我们表明,联想性恐惧记忆的获得依赖于小鼠听觉皮层中去抑制性微回路的募集。听觉皮层中与恐惧条件反射相关的去抑制作用是由足部电击介导的皮层 1 中间神经元的胆碱能激活驱动的,进而产生对层 2/3 钙蛋白阳性中间神经元的抑制。重要的是,药理学或光遗传学阻断锥体神经元去抑制作用会使恐惧学习消失。这些数据共同表明,听觉皮层中的刺激汇聚对于复杂音调的联想性恐惧学习是必要的,确定了介导这种汇聚的回路元件,并表明层 1 介导的去抑制作用是新皮层回路中学习和信息处理的重要机制。