Suppr超能文献

全基因组染色质重塑的定量分析

Quantitative analysis of genome-wide chromatin remodeling.

作者信息

Baek Songjoon, Sung Myong-Hee, Hager Gordon L

机构信息

Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

出版信息

Methods Mol Biol. 2012;833:433-41. doi: 10.1007/978-1-61779-477-3_26.

Abstract

Recent high-throughput sequencing technologies have opened the door for genome-wide characterization of chromatin features at an unprecedented resolution. Chromatin accessibility is an important property that regulates protein binding and other nuclear processes. Here, we describe computational methods to analyze chromatin accessibility using DNaseI hypersensitivity by sequencing (DNaseI-seq). Although there are numerous bioinformatic tools to analyze ChIP-seq data, our statistical algorithm was developed specifically to identify significantly accessible genomic regions by handling features of DNaseI hypersensitivity. Without prior knowledge of relevant protein factors, one can discover genome-wide chromatin remodeling events associated with specific conditions or differentiation stages from quantitative analysis of DNaseI hypersensitivity. By performing appropriate subsequent computational analyses on a select subset of remodeled sites, it is also possible to extract information about putative factors that may bind to specific DNA elements within DNaseI hypersensitive sites. These approaches enabled by DNaseI-seq represent a powerful new methodology that reveals mechanisms of transcriptional regulation.

摘要

近期的高通量测序技术以前所未有的分辨率为全基因组染色质特征的表征打开了大门。染色质可及性是一种调节蛋白质结合及其他核过程的重要特性。在此,我们描述了通过测序分析利用DNaseI超敏反应来分析染色质可及性的计算方法(DNaseI-seq)。尽管有众多生物信息学工具可用于分析ChIP-seq数据,但我们的统计算法是专门为通过处理DNaseI超敏反应的特征来识别显著可及的基因组区域而开发的。无需事先了解相关蛋白质因子,通过对DNaseI超敏反应进行定量分析,就可以发现与特定条件或分化阶段相关的全基因组染色质重塑事件。通过对选定的重塑位点子集进行适当的后续计算分析,还能够提取有关可能与DNaseI超敏位点内特定DNA元件结合的假定因子的信息。由DNaseI-seq实现的这些方法代表了一种强大的新方法,可揭示转录调控机制。

相似文献

1
Quantitative analysis of genome-wide chromatin remodeling.
Methods Mol Biol. 2012;833:433-41. doi: 10.1007/978-1-61779-477-3_26.
2
Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes.
Methods Mol Biol. 2016;1418:225-40. doi: 10.1007/978-1-4939-3578-9_12.
3
BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
Bioinformatics. 2015 Sep 1;31(17):2852-9. doi: 10.1093/bioinformatics/btv294. Epub 2015 May 7.
4
Genomic methods in profiling DNA accessibility and factor localization.
Chromosome Res. 2020 Mar;28(1):69-85. doi: 10.1007/s10577-019-09619-9. Epub 2019 Nov 27.
5
XL-DNase-seq: improved footprinting of dynamic transcription factors.
Epigenetics Chromatin. 2019 Jun 4;12(1):30. doi: 10.1186/s13072-019-0277-6.
6
DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
Bioinformatics. 2017 Apr 1;33(7):956-963. doi: 10.1093/bioinformatics/btw740.
7
Segmentation and genome annotation algorithms for identifying chromatin state and other genomic patterns.
PLoS Comput Biol. 2021 Oct 14;17(10):e1009423. doi: 10.1371/journal.pcbi.1009423. eCollection 2021 Oct.
8
Genome-wide footprinting: ready for prime time?
Nat Methods. 2016 Mar;13(3):222-228. doi: 10.1038/nmeth.3766.
9
MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments.
PLoS Comput Biol. 2019 Apr 15;15(4):e1006982. doi: 10.1371/journal.pcbi.1006982. eCollection 2019 Apr.
10
PeaKDEck: a kernel density estimator-based peak calling program for DNaseI-seq data.
Bioinformatics. 2014 May 1;30(9):1302-4. doi: 10.1093/bioinformatics/btt774. Epub 2014 Jan 8.

引用本文的文献

2
Spt5-mediated enhancer transcription directly couples enhancer activation with physical promoter interaction.
Nat Genet. 2020 May;52(5):505-515. doi: 10.1038/s41588-020-0605-6. Epub 2020 Apr 6.
3
Computational Methods for Assessing Chromatin Hierarchy.
Comput Struct Biotechnol J. 2018 Feb 15;16:43-53. doi: 10.1016/j.csbj.2018.02.003. eCollection 2018.
4
Anti-Inflammatory Chromatinscape Suggests Alternative Mechanisms of Glucocorticoid Receptor Action.
Immunity. 2017 Aug 15;47(2):298-309.e5. doi: 10.1016/j.immuni.2017.07.012. Epub 2017 Aug 8.
5
Hierarchical role for transcription factors and chromatin structure in genome organization along adipogenesis.
FEBS J. 2017 Oct;284(19):3230-3244. doi: 10.1111/febs.14183. Epub 2017 Aug 16.
7
Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response.
Genome Res. 2017 Mar;27(3):427-439. doi: 10.1101/gr.212175.116. Epub 2016 Dec 28.
8
ALTRE: workflow for defining ALTered Regulatory Elements using chromatin accessibility data.
Bioinformatics. 2017 Mar 1;33(5):740-742. doi: 10.1093/bioinformatics/btw688.
9
Identification of Binding Targets of a Pyrrole-Imidazole Polyamide KR12 in the LS180 Colorectal Cancer Genome.
PLoS One. 2016 Oct 31;11(10):e0165581. doi: 10.1371/journal.pone.0165581. eCollection 2016.
10
Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes.
Methods Mol Biol. 2016;1418:225-40. doi: 10.1007/978-1-4939-3578-9_12.

本文引用的文献

1
Control of nuclear receptor function by local chromatin structure.
FEBS J. 2011 Jul;278(13):2211-30. doi: 10.1111/j.1742-4658.2011.08126.x. Epub 2011 May 26.
2
Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis.
EMBO J. 2011 Apr 20;30(8):1459-72. doi: 10.1038/emboj.2011.65. Epub 2011 Mar 22.
3
Chromatin accessibility pre-determines glucocorticoid receptor binding patterns.
Nat Genet. 2011 Mar;43(3):264-8. doi: 10.1038/ng.759. Epub 2011 Jan 23.
5
Footprints by deep sequencing.
Nat Methods. 2009 Apr;6(4):254-5. doi: 10.1038/nmeth0409-254.
6
Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.
Nat Methods. 2009 Apr;6(4):283-9. doi: 10.1038/nmeth.1313. Epub 2009 Mar 22.
7
High-resolution mapping and characterization of open chromatin across the genome.
Cell. 2008 Jan 25;132(2):311-22. doi: 10.1016/j.cell.2007.12.014.
8
Quantifying similarity between motifs.
Genome Biol. 2007;8(2):R24. doi: 10.1186/gb-2007-8-2-r24.
9
MEME: discovering and analyzing DNA and protein sequence motifs.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73. doi: 10.1093/nar/gkl198.
10
Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays.
Nat Methods. 2006 Jul;3(7):511-8. doi: 10.1038/nmeth890.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验