Suppr超能文献

使用间接伞形抽样量化各种形状和大小体积中的密度涨落。

Quantifying density fluctuations in volumes of all shapes and sizes using indirect umbrella sampling.

作者信息

Patel Amish J, Varilly Patrick, Chandler David, Garde Shekhar

机构信息

Howard P. Isermann Department of Chemical & Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180.

出版信息

J Stat Phys. 2011 Oct 1;145(2):265-275. doi: 10.1007/s10955-011-0269-9.

Abstract

Water density fluctuations are an important statistical mechanical observable that is related to many-body correlations, as well as hydrophobic hydration and interactions. Local water density fluctuations at a solid-water surface have also been proposed as a measure of it's hydrophobicity. These fluctuations can be quantified by calculating the probability, P(v)(N), of observing N waters in a probe volume of interest v. When v is large, calculating P(v)(N) using molecular dynamics simulations is challenging, as the probability of observing very few waters is exponentially small, and the standard procedure for overcoming this problem (umbrella sampling in N) leads to undesirable impulsive forces. Patel et al. [J. Phys. Chem. B, 114, 1632 (2010)] have recently developed an indirect umbrella sampling (INDUS) method, that samples a coarse-grained particle number to obtain P(v)(N) in cuboidal volumes. Here, we present and demonstrate an extension of that approach to volumes of other basic shapes, like spheres and cylinders, as well as to collections of such volumes. We further describe the implementation of INDUS in the NPT ensemble and calculate P(v)(N) distributions over a broad range of pressures. Our method may be of particular interest in characterizing the hydrophobicity of interfaces of proteins, nanotubes and related systems.

摘要

水密度涨落是一种重要的统计力学可观测量,它与多体关联以及疏水水合作用和相互作用相关。固体 - 水表面的局部水密度涨落也被提议作为衡量其疏水性的一种方法。这些涨落可以通过计算在感兴趣的探测体积(v)中观测到(N)个水分子的概率(P(v)(N))来量化。当(v)较大时,使用分子动力学模拟计算(P(v)(N))具有挑战性,因为观测到极少水分子的概率呈指数级小,并且克服这个问题的标准程序(对(N)进行伞形采样)会导致不良的脉冲力。帕特尔等人[《物理化学杂志B》,114,1632 (2010)]最近开发了一种间接伞形采样(INDUS)方法,该方法对粗粒化的粒子数进行采样,以在长方体体积中获得(P(v)(N))。在这里,我们展示并演示了将该方法扩展到其他基本形状的体积,如球体和圆柱体,以及此类体积的集合。我们进一步描述了INDUS在NPT系综中的实现,并计算了在广泛压力范围内的(P(v)(N))分布。我们的方法在表征蛋白质、纳米管及相关系统界面的疏水性方面可能特别有意义。

相似文献

1
Quantifying density fluctuations in volumes of all shapes and sizes using indirect umbrella sampling.
J Stat Phys. 2011 Oct 1;145(2):265-275. doi: 10.1007/s10955-011-0269-9.
2
Characterizing Solvent Density Fluctuations in Dynamical Observation Volumes.
J Phys Chem B. 2019 Feb 21;123(7):1650-1661. doi: 10.1021/acs.jpcb.8b11423. Epub 2019 Feb 12.
3
Sparse Sampling of Water Density Fluctuations in Interfacial Environments.
J Chem Theory Comput. 2016 Feb 9;12(2):706-13. doi: 10.1021/acs.jctc.5b01037. Epub 2016 Jan 26.
4
Connecting Non-Gaussian Water Density Fluctuations to the Lengthscale Dependent Crossover in Hydrophobic Hydration.
J Phys Chem B. 2022 Oct 6;126(39):7604-7614. doi: 10.1021/acs.jpcb.2c04990. Epub 2022 Sep 26.
5
Fluctuations of water near extended hydrophobic and hydrophilic surfaces.
J Phys Chem B. 2010 Feb 4;114(4):1632-7. doi: 10.1021/jp909048f.
8
Bridging Gaussian Density Fluctuations from Microscopic to Macroscopic Volumes: Applications to Non-Polar Solute Hydration Thermodynamics.
J Phys Chem B. 2021 Jul 29;125(29):8152-8164. doi: 10.1021/acs.jpcb.1c04087. Epub 2021 Jul 20.

引用本文的文献

1
On Enthalpy-Entropy Compensation Characterizing Processes in Aqueous Solution.
Entropy (Basel). 2025 Jul 2;27(7):716. doi: 10.3390/e27070716.
2
Hydrophobicity in Intrinsically Disordered Protein Force Fields: Implications for Conformational Ensembles and Protein-Protein Interactions.
J Phys Chem B. 2025 Jul 10;129(27):6817-6827. doi: 10.1021/acs.jpcb.5c02360. Epub 2025 Jun 26.
3
Remarks on Life Feasibility on the Red Planet.
Microorganisms. 2025 May 11;13(5):1105. doi: 10.3390/microorganisms13051105.
4
Water-directed pinning is key to tau prion formation.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2421391122. doi: 10.1073/pnas.2421391122. Epub 2025 Apr 28.
6
Molecular-Scale Liquid Density Fluctuations and Cavity Thermodynamics.
Entropy (Basel). 2024 Jul 24;26(8):620. doi: 10.3390/e26080620.
7
Solvation thermodynamics from cavity shapes of amino acids.
PNAS Nexus. 2023 Jul 26;2(8):pgad239. doi: 10.1093/pnasnexus/pgad239. eCollection 2023 Aug.
8
Gaussian and Non-Gaussian Solvent Density Fluctuations within Solute Cavities in a Water-like Solvent.
J Chem Theory Comput. 2024 Feb 27;20(4):1505-1518. doi: 10.1021/acs.jctc.3c00387. Epub 2023 Jul 12.
9
Inner pore hydration free energy controls the activation of big potassium channels.
Biophys J. 2023 Apr 4;122(7):1158-1167. doi: 10.1016/j.bpj.2023.02.005. Epub 2023 Feb 10.
10
Structural features of interfacial water predict the hydrophobicity of chemically heterogeneous surfaces.
Chem Sci. 2023 Jan 3;14(5):1308-1319. doi: 10.1039/d2sc02856e. eCollection 2023 Feb 1.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
2
Extended surfaces modulate hydrophobic interactions of neighboring solutes.
Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17678-83. doi: 10.1073/pnas.1110703108. Epub 2011 Oct 10.
3
An improved coarse-grained model of solvation and the hydrophobic effect.
J Chem Phys. 2011 Feb 21;134(7):074109. doi: 10.1063/1.3532939.
4
Entropy and enthalpy convergence of hydrophobic solvation beyond the hard-sphere limit.
J Chem Phys. 2011 Feb 7;134(5):055105. doi: 10.1063/1.3530585.
5
Mapping hydrophobicity at the nanoscale: applications to heterogeneous surfaces and proteins.
Faraday Discuss. 2010;146:353-65; discussion 367-93, 395-401. doi: 10.1039/b927019a.
6
Interfacial thermodynamics of confined water near molecularly rough surfaces.
Faraday Discuss. 2010;146:341-52; discussion 367-93, 395-401. doi: 10.1039/b925913a.
7
The influence of molecular-scale roughness on the surface spreading of an aqueous nanodrop.
Faraday Discuss. 2010;146:67-77; discussion 79-101, 395-401. doi: 10.1039/b927061m.
8
Fluctuations in number of water molecules confined between nanoparticles.
J Phys Chem B. 2010 Oct 28;114(42):13410-4. doi: 10.1021/jp1072654.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验