Suppr超能文献

用于检测轻度认知障碍的口语衍生测量方法。

Spoken Language Derived Measures for Detecting Mild Cognitive Impairment.

作者信息

Roark Brian, Mitchell Margaret, Hosom John-Paul, Hollingshead Kristy, Kaye Jeffrey

机构信息

Center for Spoken Language Understanding, Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239 USA.

出版信息

IEEE Trans Audio Speech Lang Process. 2011 Sep 1;19(7):2081-2090. doi: 10.1109/TASL.2011.2112351.

Abstract

Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI.

摘要

在神经心理学测试中,受试者给出的口头回答能够提供超越测试表现的诊断标志物。特别是,口语本身的特征能够区分不同的受试者群体。我们展示了此类标志物在区分健康老年人和轻度认知障碍(MCI)受试者方面的效用。给定一个口头叙述回忆任务的音频和文字记录,一系列标志物会自动生成。这些标志物包括诸如停顿频率和时长等语音特征,以及许多语言复杂性度量。我们研究了根据(文字记录与音频的)手动标注时间对齐和句法剖析树计算得出的度量,以及根据自动(强制)时间对齐和自动剖析计算得出的相同度量。我们发现,对于许多度量,临床受试者群体之间存在统计学上的显著差异。这些差异在自动化处理后基本得以保留。然后我们展示了分类结果,并证明在使用神经心理学测试分数之外,再加上从自动口语衍生特征时,ROC曲线下面积(AUC)有统计学上的显著提升。我们的结果表明,使用多种互补的度量有助于MCI的自动检测。

相似文献

1
Spoken Language Derived Measures for Detecting Mild Cognitive Impairment.
IEEE Trans Audio Speech Lang Process. 2011 Sep 1;19(7):2081-2090. doi: 10.1109/TASL.2011.2112351.
2
Predicting mild cognitive impairment from spontaneous spoken utterances.
Alzheimers Dement (N Y). 2017 Feb 27;3(2):219-228. doi: 10.1016/j.trci.2017.01.006. eCollection 2017 Jun.
3
Speech Analysis by Natural Language Processing Techniques: A Possible Tool for Very Early Detection of Cognitive Decline?
Front Aging Neurosci. 2018 Nov 13;10:369. doi: 10.3389/fnagi.2018.00369. eCollection 2018.
4
Linguistic Abnormalities in Isolated Rapid Eye Movement Sleep Behavior Disorder.
Mov Disord. 2022 Sep;37(9):1872-1882. doi: 10.1002/mds.29140. Epub 2022 Jul 7.
5
A Speech Recognition-based Solution for the Automatic Detection of Mild Cognitive Impairment from Spontaneous Speech.
Curr Alzheimer Res. 2018;15(2):130-138. doi: 10.2174/1567205014666171121114930.
6
Connected speech and language in mild cognitive impairment and Alzheimer's disease: A review of picture description tasks.
J Clin Exp Neuropsychol. 2018 Nov;40(9):917-939. doi: 10.1080/13803395.2018.1446513. Epub 2018 Apr 19.
7
Comparing Pre-trained and Feature-Based Models for Prediction of Alzheimer's Disease Based on Speech.
Front Aging Neurosci. 2021 Apr 27;13:635945. doi: 10.3389/fnagi.2021.635945. eCollection 2021.
9
Connected speech as a marker of disease progression in autopsy-proven Alzheimer's disease.
Brain. 2013 Dec;136(Pt 12):3727-37. doi: 10.1093/brain/awt269. Epub 2013 Oct 18.
10
The Joint Effects of Acoustic and Linguistic Markers for Early Identification of Mild Cognitive Impairment.
Front Digit Health. 2022 Feb 11;3:702772. doi: 10.3389/fdgth.2021.702772. eCollection 2021.

引用本文的文献

1
Reaction time variations in normal aging and elderly MCI patients under various cognitive load conditions.
Front Hum Neurosci. 2025 Jul 23;19:1623252. doi: 10.3389/fnhum.2025.1623252. eCollection 2025.
2
Unveiling 30 years of research on speech biomarker of dementia using text mining.
Digit Health. 2025 Jul 29;11:20552076251360901. doi: 10.1177/20552076251360901. eCollection 2025 Jan-Dec.
3
Audio and linguistic prediction of objective and subjective cognition in older adults: what is the role of different prompts?
Front Psychiatry. 2025 Jul 1;16:1596132. doi: 10.3389/fpsyt.2025.1596132. eCollection 2025.
4
A Systematic Review of Natural Language Processing Techniques for Early Detection of Cognitive Impairment.
Mayo Clin Proc Digit Health. 2025 Mar 5;3(2):100205. doi: 10.1016/j.mcpdig.2025.100205. eCollection 2025 Jun.
5
The classification of mild cognitive impairment or healthy ageing improves when including practice effects derived from a semantic verbal fluency task.
Alzheimers Dement (Amst). 2025 Jun 4;17(2):e70127. doi: 10.1002/dad2.70127. eCollection 2025 Apr-Jun.
6
Role of pause duration in primary progressive aphasia.
Aphasiology. 2024 Jun 21;39(5):601-619. doi: 10.1080/02687038.2024.2366285. eCollection 2025.
7
GPT-D: Inducing Dementia-related Linguistic Anomalies by Deliberate Degradation of Artificial Neural Language Models.
Proc Conf Assoc Comput Linguist Meet. 2022 May;2022:1866-1877. doi: 10.18653/v1/2022.acl-long.131.
8
The Post-Stroke Speech Transcription (PSST) Challenge.
LREC Int Conf Lang Resour Eval. 2022 Jun;2022(RaPID4 Workshop):41-55.
10
Articulatory precision from connected speech as a marker of cognitive decline in Alzheimer's disease risk-enriched cohorts.
J Alzheimers Dis. 2025 Jan;103(2):476-486. doi: 10.1177/13872877241300149. Epub 2024 Dec 5.

本文引用的文献

1
Speaker-Independent Phoneme Alignment Using Transition-Dependent States.
Speech Commun. 2009 Apr;51(4):352-368. doi: 10.1016/j.specom.2008.11.003.
2
Automatic measurement of propositional idea density from part-of-speech tagging.
Behav Res Methods. 2008 May;40(2):540-5. doi: 10.3758/brm.40.2.540.
3
Dementia assessment in primary care: results from a study in three managed care systems.
J Gerontol A Biol Sci Med Sci. 2004 Jun;59(6):M621-6. doi: 10.1093/gerona/59.6.m621.
4
Mild cognitive impairment: prevalence, prognosis, aetiology, and treatment.
Lancet Neurol. 2003 Jan;2(1):15-21. doi: 10.1016/s1474-4422(03)00262-x.
5
Natural history of cognitive decline in the old old.
Neurology. 2003 May 13;60(9):1489-94. doi: 10.1212/01.wnl.0000063317.44167.5c.
6
Incidence and outcome of mild cognitive impairment in a population-based prospective cohort.
Neurology. 2002 Nov 26;59(10):1594-9. doi: 10.1212/01.wnl.0000034176.07159.f8.
7
Mild cognitive impairment: conceptual basis and current nosological status.
Lancet. 2000 Jan 15;355(9199):225-8. doi: 10.1016/S0140-6736(99)06155-3.
8
Mild cognitive impairment: clinical characterization and outcome.
Arch Neurol. 1999 Mar;56(3):303-8. doi: 10.1001/archneur.56.3.303.
9
Linguistic complexity: locality of syntactic dependencies.
Cognition. 1998 Aug;68(1):1-76. doi: 10.1016/s0010-0277(98)00034-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验