Suppr超能文献

中风后言语转录(PSST)挑战赛

The Post-Stroke Speech Transcription (PSST) Challenge.

作者信息

Gale Robert C, Fleegle Mikala, Fergadiotis Gerasimos, Bedrick Steven

机构信息

Oregon Health and Science University, Portland, Oregon, USA.

Portland State University, Portland, Oregon, USA.

出版信息

LREC Int Conf Lang Resour Eval. 2022 Jun;2022(RaPID4 Workshop):41-55.

Abstract

We present the outcome of the Post-Stroke Speech Transcription (PSST) challenge. For the challenge, we prepared a new data resource of responses to two confrontation naming tests found in AphasiaBank, extracting audio and adding new phonemic transcripts for each response. The challenge consisted of two tasks. Task A asked challengers to build an automatic speech recognizer (ASR) for phonemic transcription of the PSST samples, evaluated in terms of phoneme error rate (PER) as well as a finer-grained metric derived from phonological feature theory, feature error rate (FER). The best model had a 9.9% FER / 20.0% PER, improving on our baseline by a relative 18% and 24%, respectively. Task B approximated a downstream assessment task, asking challengers to identify whether each recording contained a correctly pronounced target word. Challengers were unable to improve on the baseline algorithm; however, using this algorithm with the improved transcripts from Task A resulted in 92.8% accuracy / 0.921 F1, a relative improvement of 2.8% and 3.3%, respectively.

摘要

我们展示了中风后言语转录(PSST)挑战赛的结果。针对该挑战赛,我们准备了一个新的数据资源,它来自失语症库中两项对答命名测试的回答,提取了音频并为每个回答添加了新的音素转录文本。挑战赛包含两项任务。任务A要求参赛者构建一个自动语音识别器(ASR),用于对PSST样本进行音素转录,评估指标为音素错误率(PER)以及从音系特征理论得出的更细化的指标——特征错误率(FER)。最佳模型的FER为9.9%,PER为20.0%,相对于我们的基线分别提高了18%和24%。任务B近似于一个下游评估任务,要求参赛者识别每个录音中是否包含正确发音的目标单词。参赛者未能改进基线算法;然而,将该算法与任务A中改进后的转录文本结合使用,准确率达到了92.8%,F1值为0.921,相对于基线分别提高了2.8%和3.3%。

相似文献

1
The Post-Stroke Speech Transcription (PSST) Challenge.中风后言语转录(PSST)挑战赛
LREC Int Conf Lang Resour Eval. 2022 Jun;2022(RaPID4 Workshop):41-55.
9
Phonological therapy in jargon aphasia: effects on naming and neologisms.命名障碍性失语症的语音治疗:对命名和新语的影响。
Int J Lang Commun Disord. 2013 Sep-Oct;48(5):582-95. doi: 10.1111/1460-6984.12038. Epub 2013 Jul 11.

本文引用的文献

2
Algorithmic Classification of Five Characteristic Types of Paraphasias.错语五种特征类型的算法分类
Am J Speech Lang Pathol. 2016 Dec 1;25(4S):S776-S787. doi: 10.1044/2016_AJSLP-15-0147.
8
AphasiaBank: Methods for Studying Discourse.失语症语料库:话语研究方法
Aphasiology. 2011;25(11):1286-1307. doi: 10.1080/02687038.2011.589893. Epub 2011 Sep 22.
9
Short-form Philadelphia naming test: rationale and empirical evaluation.短式费城命名测试:原理与实证评估。
Am J Speech Lang Pathol. 2012 May;21(2):S140-53. doi: 10.1044/1058-0360(2012/11-0089). Epub 2012 Jan 31.
10
Left hemisphere plasticity and aphasia recovery.左半球的可塑性与失语症的恢复。
Neuroimage. 2012 Apr 2;60(2):854-63. doi: 10.1016/j.neuroimage.2011.12.057. Epub 2011 Dec 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验