Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
J Biol Inorg Chem. 2012 Mar;17(3):425-36. doi: 10.1007/s00775-011-0865-9. Epub 2011 Dec 28.
As metalloenzymes capable of transforming a broad range of substrates with high stereo- and regio-specificity, the multicomponent Rieske oxygenases (ROs) have been studied in bacterial systems for applications in bioremediation and industrial biocatalysis. These studies include genetic and biochemical investigations, determination of enzyme structure, phylogenetic analysis, and enzyme classification. Although RO terminal oxygenase components (RO-Os) share a conserved domain structure, their sequences are highly divergent and present significant challenges for identification and classification. Herein, we present the first global phylogenetic analysis of a broad range of RO-Os from diverse taxonomic groups. We employed objective, structure-based criteria to significantly reduce the inclusion of erroneously aligned sequences in the analysis. Our findings reveal that RO biochemical studies to date have been largely concentrated in an unexpectedly narrow portion of the RO-O sequence landscape. Additionally, our analysis demonstrates the existence two distinct groups of RO-O sequences. Finally, the sequence diversity recognized in this study necessitates a new RO-O classification scheme. We therefore propose a P450-like naming system. Our results reveal a diversity of sequence and potential catalytic functionality that has been wholly unappreciated in the RO literature. This study also demonstrates that many commonly used bioinformatic tools may not be sufficient to analyze the vast amount of data available in current databases. These findings facilitate the expanded exploration of RO catalytic capabilities in both biological and technological contexts and increase the potential for practical exploitation of their activities.
作为能够转化具有高度立体和区域特异性的广泛底物的金属酶,多组分 Rieske 加氧酶(RO)已在细菌系统中进行了研究,以应用于生物修复和工业生物催化。这些研究包括遗传和生化研究、酶结构测定、系统发育分析和酶分类。尽管 RO 末端加氧酶组件(RO-Os)具有保守的结构域结构,但它们的序列高度多样化,这对鉴定和分类提出了重大挑战。在此,我们对来自不同分类群的广泛 RO-Os 进行了首次全球系统发育分析。我们采用了客观的、基于结构的标准,显著减少了分析中错误对齐序列的包含。我们的研究结果表明,迄今为止,RO 的生化研究主要集中在 RO-O 序列景观的一个出乎意料的狭窄部分。此外,我们的分析表明存在两组不同的 RO-O 序列。最后,本研究中识别的序列多样性需要新的 RO-O 分类方案。因此,我们提出了一个 P450 样命名系统。我们的研究结果揭示了 RO 文献中完全没有意识到的序列和潜在催化功能的多样性。这项研究还表明,许多常用的生物信息学工具可能不足以分析当前数据库中可用的大量数据。这些发现促进了在生物和技术背景下对 RO 催化能力的扩展探索,并增加了实际利用其活性的潜力。