Suppr超能文献

症候群学:神经创伤研究的一种生物信息学方法。

Syndromics: a bioinformatics approach for neurotrauma research.

机构信息

Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA 94110 USA.

出版信息

Transl Stroke Res. 2011 Dec;2(4):438-54. doi: 10.1007/s12975-011-0121-1. Epub 2011 Nov 18.

Abstract

Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational "syndrome" produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call "syndromics", which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings.

摘要

在过去的 50 年中,在描绘脊髓和大脑创伤后的原发性和继发性损伤所涉及的许多生物学机制方面取得了重大的科学进展。这些进展突出了许多潜在的治疗方法,这些方法可能有助于在受伤后恢复功能。尽管取得了这些进展,但从实验室到临床的转化仍然难以实现。新型疗法的转化测试需要标准化的功能测量方法,以便在不同的实验室、范式和物种之间进行比较。尽管已经在动物模型中开发了许多功能评估方法,但仍不清楚如何最好地整合这些信息来描述神经创伤产生的完整转化“综合征”。本文描述了一种用于整合多种神经创伤数据的多变量统计框架,并回顾了迄今为止少数几篇采用信息密集型方法进行基础神经创伤研究的论文。我们认为,这些论文可以被描述为我们称之为“综合分析”的一个新领域的开创性工作,该领域旨在将信息学工具应用于疾病模型,以从多尺度数据中描述全套机制相互关系。在未来,原始神经创伤数据的集中式数据库将能够更好地进行综合分析,并有助于未来的转化研究,从而实现更有效的测试方案和更具临床相关性的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/240e/3236294/8156c8227f29/12975_2011_121_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验