Huie J Russell, Nielson Jessica L, Wolfsbane Jorden, Andersen Clark R, Spratt Heidi M, DeWitt Douglas S, Ferguson Adam R, Hawkins Bridget E
Weill Institutes for Neurosciences, Brain and Spinal Injury Center, Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States.
San Francisco Veterans Administration Medical Center, San Francisco, CA, United States.
Front Bioeng Biotechnol. 2023 Jan 10;10:887898. doi: 10.3389/fbioe.2022.887898. eCollection 2022.
Understanding recovery from TBI is complex, involving multiple systems and modalities. The current study applied modern data science tools to manage this complexity and harmonize large-scale data to understand relationships between gene expression and behavioral outcomes in a preclinical model of chronic TBI (cTBI). Data collected by the Moody Project for Translational TBI Research included rats with no injury (naïve animals with similar amounts of anesthetic exposure to TBI and sham-injured animals), sham injury, or lateral fluid percussion TBI, followed by recovery periods up to 12 months. Behavioral measures included locomotor coordination (beam balance neuroscore) and memory and cognition assessments (Morris water maze: MWM) at multiple timepoints. Gene arrays were performed using hippocampal and cortical samples to probe 45,610 genes. To reduce the high dimensionality of molecular and behavioral domains and uncover gene-behavior associations, we performed non-linear principal components analyses (NL-PCA), which de-noised the data. Genomic NL-PCA unveiled three interpretable eigengene components (PC2, PC3, and PC4). Ingenuity pathway analysis (IPA) identified the PCs as an integrated stress response (PC2; EIF2-mTOR, corticotropin signaling, etc.), inflammatory factor translation (PC3; PI3K-p70S6K signaling), and neurite growth inhibition (PC4; Rho pathways). Behavioral PCA revealed three principal components reflecting the contribution of MWM overall speed and distance, neuroscore/beam walk, and MWM platform measures. Integrating the genomic and behavioral domains, we then performed a 'meta-PCA' on individual PC scores for each rat from genomic and behavioral PCAs. This meta-PCA uncovered three unique multimodal PCs, characterized by robust associations between inflammatory/stress response and neuroscore/beam walk performance (meta-PC1), stress response and MWM performance (meta-PC2), and stress response and neuroscore/beam walk performance (meta-PC3). Multivariate analysis of variance (MANOVA) on genomic-behavioral meta-PC scores tested separately on cortex and hippocampal samples revealed the main effects of TBI and recovery time. These findings are a proof of concept for the integration of disparate data domains for translational knowledge discovery, harnessing the full syndromic space of TBI.
理解创伤性脑损伤(TBI)后的恢复过程很复杂,涉及多个系统和模式。当前的研究应用现代数据科学工具来处理这种复杂性,并整合大规模数据,以了解慢性创伤性脑损伤(cTBI)临床前模型中基因表达与行为结果之间的关系。穆迪转化性创伤性脑损伤研究项目收集的数据包括未受伤的大鼠(与创伤性脑损伤和假手术损伤动物麻醉暴露量相似的未处理动物)、假手术损伤或侧方流体冲击性创伤性脑损伤,随后是长达12个月的恢复期。行为测量包括在多个时间点的运动协调性(平衡木神经评分)以及记忆和认知评估(莫里斯水迷宫:MWM)。使用海马体和皮质样本进行基因阵列检测,以探测45,610个基因。为了降低分子和行为领域的高维度并揭示基因与行为的关联,我们进行了非线性主成分分析(NL-PCA),该分析对数据进行了去噪处理。基因组NL-PCA揭示了三个可解释的特征基因成分(PC2、PC3和PC4)。 Ingenuity通路分析(IPA)将这些主成分确定为综合应激反应(PC2;EIF2-mTOR、促肾上腺皮质激素信号传导等)、炎症因子翻译(PC3;PI3K-p70S6K信号传导)和神经突生长抑制(PC4;Rho通路)。行为主成分分析揭示了三个主成分,反映了MWM总体速度和距离、神经评分/平衡木行走以及MWM平台测量的贡献。整合基因组和行为领域后,我们对每只大鼠在基因组和行为主成分分析中的个体主成分得分进行了“元主成分分析”。这种元主成分分析揭示了三个独特的多模态主成分,其特征是炎症/应激反应与神经评分/平衡木行走表现之间存在强烈关联(元PC1)、应激反应与MWM表现之间存在关联(元PC2)以及应激反应与神经评分/平衡木行走表现之间存在关联(元PC3)。对基因组-行为元主成分得分分别在皮质和海马体样本上进行的多变量方差分析(MANOVA)揭示了创伤性脑损伤和恢复时间的主要影响。这些发现是一个概念验证,证明了整合不同数据领域以进行转化性知识发现的可行性,利用了创伤性脑损伤的完整综合征空间。