Department of Materials Science & Engineering, University of Washington, Materials Science and Engineering, Seattle, Washington 98195, USA.
J Biomed Mater Res A. 2012 Mar;100(3):728-37. doi: 10.1002/jbm.a.34011. Epub 2011 Dec 30.
Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ∼10 to 25 nm), size distribution, and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life, and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ-0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, H₀ = 14 kA/m); however, with a broader size distribution (σ-0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment.
磁流体热疗(MFH)是一种有前途的辅助癌症治疗方法,它基于在交变磁场(AMF)中使用氧化铁磁性纳米粒子(MNPs)的弛豫损耗来局部加热肿瘤。在这项研究中,我们通过将 MNP 尺寸调整到应用的 AMF 频率来优化 MFH。与传统的水相合成路线不同,我们使用有机合成路线,可以精确控制 MNP 的尺寸(直径约为 10 至 25nm)、尺寸分布和相纯度。此外,通过使用生物相容性两亲聚合物成功地将这些颗粒转移到水相,且具有长期的货架寿命。严格的表征方案确保了水稳定的 MNPs 满足所有关键要求:(1)均匀的形状和单分散性,(2)相纯度,(3)接近体相的稳定磁性,(4)胶体稳定性,(5)实质性的货架寿命,(6)不存在明显的体外毒性。然后,我们使用专用的热疗系统发现,16nm 单分散 MNPs(σ-0.175)对我们选择的 AMF 条件(f=373kHz,H₀=14kA/m)反应最佳;然而,具有较宽的尺寸分布(σ-0.284)时,比损耗功率(SLP)降低了 30%。最后,我们表明这些经过调整的 MNPs 通过体外降低 Jurkat 细胞的活力表现出最大的热疗效率,这表明我们的优化确实转化为细胞群体。总之,我们提出了一种通过将 MNPs 调整到任何应用的 AMF 来内在优化 MFH 的方法,这是优化剂量和治疗时间的必要前提。
J Biomed Mater Res A. 2011-12-30
J Appl Phys. 2012-4-1
Mater Sci Eng C Mater Biol Appl. 2020-12
Mater Sci Eng C Mater Biol Appl. 2016-11-1
J Biomed Mater Res A. 2025-1
Nanomaterials (Basel). 2023-9-20
Nanomaterials (Basel). 2021-10-17
Nanomaterials (Basel). 2020-9-15
Materials (Basel). 2020-1-7
J Magn Magn Mater. 2009-7
IEEE Trans Magn. 2010-7-1
J Control Release. 2009-8-20