文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

定制磁性纳米颗粒以优化磁流体热疗。

Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.

机构信息

Department of Materials Science & Engineering, University of Washington, Materials Science and Engineering, Seattle, Washington 98195, USA.

出版信息

J Biomed Mater Res A. 2012 Mar;100(3):728-37. doi: 10.1002/jbm.a.34011. Epub 2011 Dec 30.


DOI:10.1002/jbm.a.34011
PMID:22213652
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3266447/
Abstract

Magnetic Fluid Hyperthermia (MFH) is a promising approach towards adjuvant cancer therapy that is based on the localized heating of tumors using the relaxation losses of iron oxide magnetic nanoparticles (MNPs) in alternating magnetic fields (AMF). In this study, we demonstrate optimization of MFH by tailoring MNP size to an applied AMF frequency. Unlike conventional aqueous synthesis routes, we use organic synthesis routes that offer precise control over MNP size (diameter ∼10 to 25 nm), size distribution, and phase purity. Furthermore, the particles are successfully transferred to the aqueous phase using a biocompatible amphiphilic polymer, and demonstrate long-term shelf life. A rigorous characterization protocol ensures that the water-stable MNPs meet all the critical requirements: (1) uniform shape and monodispersity, (2) phase purity, (3) stable magnetic properties approaching that of the bulk, (4) colloidal stability, (5) substantial shelf life, and (6) pose no significant in vitro toxicity. Using a dedicated hyperthermia system, we then identified that 16 nm monodisperse MNPs (σ-0.175) respond optimally to our chosen AMF conditions (f = 373 kHz, H₀ = 14 kA/m); however, with a broader size distribution (σ-0.284) the Specific Loss Power (SLP) decreases by 30%. Finally, we show that these tailored MNPs demonstrate maximum hyperthermia efficiency by reducing viability of Jurkat cells in vitro, suggesting our optimization translates truthfully to cell populations. In summary, we present a way to intrinsically optimize MFH by tailoring the MNPs to any applied AMF, a required precursor to optimize dose and time of treatment.

摘要

磁流体热疗(MFH)是一种有前途的辅助癌症治疗方法,它基于在交变磁场(AMF)中使用氧化铁磁性纳米粒子(MNPs)的弛豫损耗来局部加热肿瘤。在这项研究中,我们通过将 MNP 尺寸调整到应用的 AMF 频率来优化 MFH。与传统的水相合成路线不同,我们使用有机合成路线,可以精确控制 MNP 的尺寸(直径约为 10 至 25nm)、尺寸分布和相纯度。此外,通过使用生物相容性两亲聚合物成功地将这些颗粒转移到水相,且具有长期的货架寿命。严格的表征方案确保了水稳定的 MNPs 满足所有关键要求:(1)均匀的形状和单分散性,(2)相纯度,(3)接近体相的稳定磁性,(4)胶体稳定性,(5)实质性的货架寿命,(6)不存在明显的体外毒性。然后,我们使用专用的热疗系统发现,16nm 单分散 MNPs(σ-0.175)对我们选择的 AMF 条件(f=373kHz,H₀=14kA/m)反应最佳;然而,具有较宽的尺寸分布(σ-0.284)时,比损耗功率(SLP)降低了 30%。最后,我们表明这些经过调整的 MNPs 通过体外降低 Jurkat 细胞的活力表现出最大的热疗效率,这表明我们的优化确实转化为细胞群体。总之,我们提出了一种通过将 MNPs 调整到任何应用的 AMF 来内在优化 MFH 的方法,这是优化剂量和治疗时间的必要前提。

相似文献

[1]
Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia.

J Biomed Mater Res A. 2011-12-30

[2]
Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems.

J Appl Phys. 2011-4-1

[3]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[4]
Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia.

J Appl Phys. 2012-4-1

[5]
Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.

Molecules. 2016-10-13

[6]
Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2020-12

[7]
Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model.

Mater Sci Eng C Mater Biol Appl. 2016-11-1

[8]
Controlled cell death by magnetic hyperthermia: effects of exposure time, field amplitude, and nanoparticle concentration.

Pharm Res. 2012-2-24

[9]
Improved Hyperthermia Treatment of Tumors Under Consideration of Magnetic Nanoparticle Distribution Using Micro-CT Imaging.

Mol Imaging Biol. 2015-12

[10]
Metal Nanoparticles for Simultaneous Use in AC Magnetic Field Hyperthermia and Magnetic Resonance Imaging.

J Biomed Mater Res A. 2025-1

引用本文的文献

[1]
Navigating predictions at nanoscale: a comprehensive study of regression models in magnetic nanoparticle synthesis.

J Mater Chem B. 2024-12-11

[2]
Magnetoliposomes with Calcium-Doped Magnesium Ferrites Anchored in the Lipid Surface for Enhanced DOX Release.

Nanomaterials (Basel). 2023-9-20

[3]
Studies on Aggregated Nanoparticles Steering during Deep Brain Membrane Crossing.

Nanomaterials (Basel). 2021-10-17

[4]
The Role of Anisotropy in Distinguishing Domination of Néel or Brownian Relaxation Contribution to Magnetic Inductive Heating: Orientations for Biomedical Applications.

Materials (Basel). 2021-4-9

[5]
Micromixer Synthesis Platform for a Tuneable Production of Magnetic Single-Core Iron Oxide Nanoparticles.

Nanomaterials (Basel). 2020-9-15

[6]
Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies.

Molecules. 2020-6-22

[7]
Nonequilibrium Dynamics of Magnetic Nanoparticles with Applications in Biomedicine.

Adv Mater. 2021-6

[8]
The Role of Magnetic Nanoparticles in Cancer Nanotheranostics.

Materials (Basel). 2020-1-7

[9]
The Effect of Polyol Composition on the Structural and Magnetic Properties of Magnetite Nanoparticles for Magnetic Particle Hyperthermia.

Materials (Basel). 2019-8-21

[10]
Tracking the Growth of Superparamagnetic Nanoparticles with an In-Situ Magnetic Particle Spectrometer (INSPECT).

Sci Rep. 2019-7-22

本文引用的文献

[1]
Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia.

J Magn Magn Mater. 2009-7

[2]
Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems.

J Appl Phys. 2011-4-1

[3]
Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging.

Med Phys. 2011-3

[4]
Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy.

IEEE Trans Magn. 2010-7-1

[5]
Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127.

Contrast Media Mol Imaging. 2010

[6]
FDA report: Ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease.

Am J Hematol. 2010-5

[7]
Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates.

Cancer. 2010-2-1

[8]
Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel.

J Control Release. 2009-8-20

[9]
The fabrication and characterization of dicalcium phosphate dihydrate-modified magnetic nanoparticles and their performance in hyperthermia processes in vitro.

Biomaterials. 2009-9

[10]
Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery.

Mol Pharm. 2009

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索